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APPROXIMATION FOR SMALL ¥ -1

He A+ Bethe

$+1 GENERAL PROCEDURE

The solution given in Chepter 2 is only valid for an exact point source
explosion, for constant a’ » for constant undisturbed density of the medium
and for very hiph shock pressurese It is very desirable to find a method
which permits the treatment of somewhat more general shook wave problems and
thereby comes ;losor to describing a real shock wave. The clue to such a
method is found in the very peculiar nature of the point source solution of
Taylor and von Neumann. It is oharlcteristic for that solution that the den-
gity is extremely low in the inner regions and is high only in the irmediate
neighborhood of the shock front. Similarly, the pressure is almost exactly
constant inside a radiis of about 8 of the radius of the shock wave.

It is particularly the first of these facts that is relevant for construct-
ing a more general methods The physicel situation is that the material behind
the shock moves outward with a high velocitys Therefore the material streams
away from the center of the shock wave and oreates a high wvacuum near the
centere The absence of any appreciable amount of matsrial, together with the
moderate size of the accelerations, immediately lemnds to the conclusiasn that
the pressure must be very nearly constant in the region of low density. It
is interesting tounote that the pressure in that rogion is by no means sgero,

but 1is almost l/b of the pressure at the shock front.

The concentratinn tor*al.gggr qgg shogk front and the corresponding
OROLASSIEL m £
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evacuation of the region near.%#to* 1‘.*’ pronounced for valnes of

hd qe
the specific heast ratio Y close to 1. It is well known that the density st
the shock increases by e factor

_/’s Y ¢1 (1)

[

This be,que infinite as & approaches unity. Therefore, for Y near 1 the
assumption that all materisl is concentrsted near the shock front becomes
more and more valide The density near the oenter can be shown to behave as

S/ =V,

 The ides of the method proposed here, is to make repeated use of the
fact that the meterial is oconcentrated near the shook front. Az a consequence
of this fact, the velocity,of n..rlj 21l the material will be the same as
the velocity of the meterial directly behind the front. MNoreover, if Y is
near 1.‘;&. material velocity behind the front is very nearly equal to the
shock velocity itself; the two quentities differ only by a faoctor 2/(¥ #1)
The acceleration of almost all the materials is then equal to the accelsration
of the shock wave; knowing the acceleration one can calonulate the pressure
distribution in terms of the material coordinate, i.e., the amount of air
ineide a given radiuse This calculatlion again is facilitated by the fact
that nearly all the material is at the shock front and therefore has the same
position in space (Bulerian coordinate’.

+ The, procedure followed is then simply this. We start from the assumption

that all material is concentrated at the shock front. We obtain the pressure

distribution. From the relation betwsen pressure and density salong an adi-
sbatic, we ocan obtain the density of each material element if we know its
pnbuurd st the present time as well as when it was first hit by the shock.

By intsgration of the density we' oAt ﬂhen’:fina'é more acourate value for the

M
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position of each mess elomcnti‘ ,;“.};ifé. pfépggi;p,guld be repented if required;
it would then lead to a power geries in powers of Y -1.

The method leads directly to a relation between the shock acceleration,
the shook pressure and the internal pressure near the center of the shook
waves In order to obtsin a differential enuation for the position of the
shock as a function of time, we have to use two adéitional facts. One is
the Hugoniot relstion between shock pressure and shock velocity. The other
is energy conservation in some form: in some applications such as that to
the point source solution itself, we may use the conservation of the total
energy which requires that the shock pressure decreases inversely as the cube
of the shock radius (similarity law/. On the other hend, if there is a cen-
tral isothermal sphere as desoribed in the last chapter, no similarity law
holds, but we ‘may consider the adiabatic expansion of the iqothermal sphere
anﬁ thus determine the decrease of the central pressufe‘ns a function of the
radius of the isothermal sphere. 1If we wish to apply the method to the case
of variable J without isothermal sphere. we may again use the conservation
of total energy but in this case the pressure will not be simply proportisnal
to 1/Y°.

As has alreadv beern indicuted,the applicaticns cf the method are very
mumercus, The case of not ver& ~igh shock pressures can a’so be includedg
in this éagv the density behird the shock wave does not have the limiting
value of Byuaticn (1) but depends itselfl Ln the shock pressure, This dces
not prevent tﬁe applicaticn of our method s long as “he dengity increasé
at the shock is still very large so that most of the material is still near
the shock frout,

The cngy limitaticns of the mathod are its moderate accuracy and the

poasicle compllcations of the rumerical werk, The acouracy seems satisfac-
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exact solution is possible, ¢ - = - e .
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2 GENERAL BQUATIONS

We shall denote the initial position of an arbitrary mass element by
r, and the position at time- t by R, The position of the shock. wave
will be denoted by Y, The density at time t is \denoted by /0 , the init-
ial density by ,/ﬁg, The pressure is p (r ,t) and the pressure behind the
shock is pg(Y), |

The continuity ecuation takes the simple form
PR 4R = P P (2)

From this we have

o/
=

The equation of motion becomes simply

4

d2R 1 2P R 2P (a)

ate 'ﬁ w Pt e

it

The pressure for any given material element is connected with its den-
sity .by the adiabatic law (conservation of energy), The particular adiabat
to be taken is determined by the condition of the material element after it
has !?een hit by the shock, If we assume‘constant T the adiabatic;reIAtion

gives

7
br.t) = By(r) (Pl ,t)) (5)
]

X ‘We shall ﬁse this relaticn'mostly to determine the density from the given

pressure distribution, Using xq\‘ution (1) i‘or the density behind the shock

0

-Fs , and the contimuity Equat"on (2.)' \vl;- t.’mc!
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dr R p =ﬁ B P(r,t)

The three conservation laws, (2), (4) and (8), must be supplemented by °
the .Hugoniot equaticns at the shock f;'ont. which are‘ kndéwn to bé,themselve;,
consequences of the dame conservation laws, These Mticna_giﬁ: for the
density at the shock frént theprésult already quoted in Bquation (1), for

the relation between shock pressum and shock velocity Y 1 7
- rz=pel T
Pt Y’ 2 * . P ‘/ﬁ'O
' 3 ) = ep———— Yz /‘,} z; ..;& (7)
[o] 1 -‘-1 v

and for the relation between the material velocity behind the shock, ﬁ, and

. ~2
the shock velocity, Y ; —amz MaV s f"’/' (”"

‘R= 2 Y/ 1) (e)

2
A

i

The problem will now be to scolve these eight equations for particular

cases with the assumption that 8 is close to 1, Then Bquation (4) reduces

- to

.
-

(9)

'm

1 or | _p
r® r ° ys

On the right hand side of this equation we have used the fact discussed in
the last section that practically all the @tarial is very near the shock

frent, Therefore the position R can be identified with the position of

the shock Y , and the acceleratign R with the shock acceleration Y.

Since the right hand side of Equation (9) is mdépaud‘ont of r, it integrates

I3

immediately to give oo  j
Y

Pir,t) = #lY) o Jg
L3 &f

IS (10)

If we use the Hugoniot relation (7) and put ¥ = 1 in that relation we find

] nae e "B R dba #R

further .o

>

"
©wre -~
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: P(r,t) y Y ) (11)
. 2 = ; + ¥ 8 8 ~
£ ' sys (Y7 =r7)

This equation gives the pressure distrimtioﬁ at any time in terms of the pos-
ition, velocity and accelsration of the shock,

Of particular interest is the relation between the shock pressure and the
pressure at the center of thé shock wave, This relation is obtained by put-

ting r = O in pquation (1), Then we get
P&o,t)/ﬂo = Y + YY/3 _ - (12)

The pressure near the center is in general smaller than the pressure at the
shock because Y is in general negative.‘

It can be seen that the derivation given here is even more general than

P was stated, In particular, 1t applies also to a madium yvhich has inltially
\ non-uniform density, It is only necessary to replace é rS by the mass en-

closed in the sphere r (except for the factor 4T /3).

From the pressure distribution (11) we can obtain the density or the
pogition R using Equation (6), Th; rermainingl\problem is now teo calculate
this density distribut.ioﬁ explicitly; and to determine the motion of the

shock wave in particular cases,

5.3 THE POINT SCURCE

%

i

The simplest application of the general theory developed in the last
v‘sec‘t.im is tc a ﬁoint gource explosion, In this case, the theory of
von Neumann and G, I, Téylor is available for cOmparisori.
Bquation (12) gives a relation between various quantities referring

to the shock and the pressure at the center of the shock wave, To make any

further progress we have to use the ccnservation of total energy in the

APPROVED FOR PUBLI C RELEASE
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‘ Table 6.3
L }(1.1 e e o167 2
i i i H
§

: 2 t ‘ i : 3 : !
P(0) /By o - | B0 | .462 424  .368, 306, 261
* ' H

i
i
i

P AR e e g etttk

(% -1 gf&A . 2,006 | 20182 } 20148 2.144. 2006 et
Witﬁwﬁﬁi relation of interﬁa! and shoek pressure knc%n, we an now cal-
culate tho'tﬁtql potential energy content. We know that the potential energy
por unit volume is p/(¥ =1)e We further know from Equaticn (11} that the
prossuro'il constant and equal to p(0) over the entire regien which is near-
ly‘free of matter. YNoreover,we krow that all the matter is concertrated in
a very thin shell near the shock fronte Therefore,with the exception of a
very umiﬂ.}fmcticn of the volume éccupied by‘tho shock wave‘. the pressure

*

is ecusl ’c§ the interior pressure. The totel energy is then

s

So A

u‘g
£ ,
u’:

' ' ’ (17)
. s z.mifg_,r‘:‘%z = 20 LA

( of. Equation (13) )

In the llnst- line of Table 5.3, above, we give the exact numericasl factor
in last expression in (1'?), accordin;'to cslculations of Hirschfelder. It
is seen that this factor is very close to 28/3, for all velues of ¥ up to
led4. This is due to » cbmponaation of varicus errores The internal pressure
iz actually i;ms ‘4than 1/2 of the shook pressure, but this is compensated by
the fect ﬁl’\af.‘tho pressure near the shoock front is higher than the internal
pressure. . Inﬁaed, the ratio of the volume average of the pressure to the
shock pre,sau:?o is much closer to 1/2 than the corresponding ratic for the
internsl pr‘-a-;;aure (cf+Equations 31e, 31b/. A further error which hss faean

made in Bquetion (17) is that the factor 2/( ¥ +1) hss been neglected in

APPROVED FCOR PUBLI C RELEASE
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shock wave. Since thesre is no characteristic length, time, or pressure in-
volved in the problem, the blast wave from a point source explosion must
obey a similarity law as has been pointed out by Taylor and von Neumann.
In other words, the pressure distribution will always have the seme form;
only the pesk pressuré and the scale of the spatial distridution will change

#s the shock wave movaé out. Now the energy is mainly potential energy (1)

(¢ Y
This assumption is not necessary for the velidity of the following
saustionse.
s v /

At

/
/

ir Y 1s olose to 1; the potentisl energy per unit volume is p/( ¥ -V
and therefore the totel potentisl energy will be proportional to p, Ys/( ¥ -1,
Therefore pg and Y2 (of. Equatior (7)) will be inversely proportionsl

to Y. This gives immedistely the equation

¥ . a7 = (13)

where A 1is a constent relatsd to the totsl energy. Intbgration gives

(5/2) 2/c; '“Al/s 2/5

Y t (14)
and differentiation gives

YY . -(3/2) Y2 (15)

Insertirg this in Equation (12/ we find immediastely

$(0,t) . 1l 2 1 P

Therefore in the limit of ¥ close to 1, the internal pressure is just 1/2
of the shock pressure. This cen be compsred with the numerical result of
von Neumsnn's theory which gives the follewing values for the ratio of in=-

terrnal pressure to shock vressure:

APPROVED FOR PUBLI C RELEASE
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Equation (7). On the other hand, the kinetic energy has been neglected.

This kinetic energy is veary nesrly egusl to

2 w 3 .2 ‘- k

(18)

‘beép,uee 2ll the material mowes almosf, with the shock velocity {f. It is
eeen that this kinetic energy is small compered with the potential energy

J. by a factor ¥ =1; this justifies our neglect df the kinetic enerpy along
with a large number of other guantities of the relstive order Z(—l. It is,

of course, cnly an sccident theat there is almost exact compensation of all

these negleoted terms up to velues of Y as high as §/3.
~ TWe cen now use our result to obtain the density distribution of the

matter behind the shook front. We need only apply Bquetions (6} anmd.(11)

to (16) and find )
o . %2 | s { i-))w X "‘-1'“( 2z ) | (10)
P g+l #( r,Y) Y4l \ x(axt 7 '

dx

with |

x = ’S/Ys (19a)
Setting also _

‘ 3.3

y = ®A , (19b)

Bquation (6) becomes
& L B-1 [ 2 )1/" | (20
S x(1ex/

to integr.to this equaticn, it is convenient to distinguish two cases:

(1) 1 x s not too small, more precisely for
x> e V(¥ - (208)

s

APPROVED FOR PUBLI C RELEASE
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we may consider the expenent in (20) as equal to 1 sines
¥ =1 is assumed smalle Then, nmegleoting quantities of order

2 .
(¥ =17, integration of (20} gives

_ lax Y .
1= (§-1) log +22 o 1« (X-1) 1og —_— (21
2 x 2r g
Ir

2 < 1 (21a)

we may peglect x compsred to 1 » Then, neglecting quantities

of relative order & -1, we got

dy = (¥-1 x.l/_x dx

(22)
(¥ -1/y |

Y - ¢ A

where A is a ocnstents The regions defined by (208} and (21a}

overlap very considerably. Comparing (21) amd (22) we find

“fn
that

A = O, (22a)

neglecting a small term of order ¥ -1 This valus of A will

make (22) sensible for small valués of x. Inserting (1Pe),

(19b) , we get

R = 11/‘:- 1.' A (23)
or .

R - (r/r) BTV (230)

From the position of any point we cen deduce the velocity by s simple

' %
differentietion with respect to time. 1In this process, the material coordinate

r should be kept constant. Equation (23) gives for the dfaterlal velcoity .

APPROVED FO? PUBLI C RELEASE
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(neglecting terms of order ¥ -1)

: ¥ -1
M Y r | —— . R
/

Over most of the volums the material velocity is nearly linesr in R which

. ’ [ i

is borne out by the numeriocal integrations of the exact solution (see chd%tor
2l Over most of the mass the material velooity is nearly equal to the veloc-

ity of the shock wave. -

5.4 COMPARISON OF THE POINT SOURCE RESULTS WITH THE EXACT SOLUTION.
R

The results obtained in the last seotion can be compared with the exsct
solution described in Chapter 2. The results of that ohapter can very easily
be applisd to the special case when X is very nearly 1l.

In going to this limit one should keep the exponent of o éornet because
this quantity goes from O to 1, and if 1t is close to 0 a fector @ ¥ ~1
will mattere 1In all other factors the base o;t‘ the power becomes (8 + 1)/2
in the 1imit ¥ =1, whioh goes over the renge from 1/2 to 1 and therefore
never boco;\u very smallse Consequently X -1 may be neglected in tﬁ exponent
of these other factors except if higher acehracy is desired.

Negleoting smell quantities in this manner, Bguation (2.27) reduces to

r/Y - 2 0?55.*1‘;@ 91/3 , (28)

Z and © being the notations used in Chapter 2. o bk

(26) may be rewritten

9 - Z3 - (l‘ /Y)s ) (25.)

Eouvetion (2.38) becomss then
4 ?1‘

, 3-1
RY = P = 8N . (/T (26)

This result for the Eulerian positicn is identicel with that cbteined from
)

S

-
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our approximate theory in Bquation (23.)- A more accurate evaluation, keeping
terms of relative order Y -1 throughout, gives
=1

L B |
-(v751) (200)

Fdr the pnnhm m fi,nﬁ from "qpitianv‘if-:zo'4i) inthlhn X =]l the o=
P - By ..0..%_3& - %p‘ [1 0(%?] (Zﬂ

Thig again 1s Wutionl wﬁ;h thn ruult of our npprox!mto theory ginu in

sult

jgua’&ion {11) qud Muation (15). Again, » more accurate evalustion, eglect-
fng only terms of nlatin order (X-l) gives: |

P e 221 1 a1y
. *; - --'-5-— [1 +$ 28' jﬂ L y(m . -2-)] (28)
with the abbreviation
§ .8 | (28a)
Of partieular interest is the relation between the total emergy and .|
such quantities as the shook pressure. We shall eh'o’rqraro calculate this
relation ineluding terms of relétive order ¥ - l¢ Pirst of all, we shall
caloulate the pbta»xftiul (heat) energy: |

LY

Epot. 2 4T R aRrR P/(Z1)

(29)

3 1
' P
g e g
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Using (26s) and (26}, we have

(29a)

& 5 a8 ' ) 6+1
. [a ©) 'é';'{"'] Q-5b%L)

| negloctinga) terms of, relative order & °. Inserting (29‘_) and P from

it ,

It is permiseible to set the factor e‘ which should sppear in the
. second term in the équare bracket, equal to one; the error in (29) is
" only of order of [

(28) into (29); we pet

T N A P

4

This integral can be evaluated very easily. We note that eg changes from

0 to 1 at very small values of @ 8o that in first approximetion for this

part of the integral, the integrand should be taken at @ « 0. (This
corresponds to the physical fact that most of the material iz near the shock
front, 11‘3 = 9£ bacomes close to 1 already for relatively small valuss

of & or of the ma_terial coorcinste Z = 1/ ). Eveluation of (30) ﬂ-ﬂt

I « 1»,8%%41—..21.)»5-[ (308}

or . |
3

et F T (s a0] W

This result, sxcept for the last factor, is identical with the result ‘
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of our sppProximate theory, Bquation (17). The last factor is seen to differ
only iory slightly from 1, the factor of J being only =0.2. It is of
some interest to define the m}orago pressure (volume nwrago); this is ac-

cording to (31):

fo 1t [1*8‘(: -ln z)] LR e [1 . ,19,.,;] (310

'rhs.a my be gompared with the contral pressure (of. (zs))

$(0) ¢ %P' {1 x J'( ) 4)] 2 EI’P {1 - .eseS] (31b)

The' avorago prosauure is, of course, higher than the central pressure; it dif-
fers fron it only in the order 8 as is to be expected; and it is much closer
to ons=hall the shock pressure than the central pressure is.

‘Now lat us calculate the kinetic energy. According to (2.45), the ratio

of kinetic to potential energy in any mass element is 8 , therefore

‘ o
Ekin ;j--%i};?-—_fo d(p)-?—-e

1; f& d 6(_,.. -m)(e-rl)a (32)

7
~—
2T 3
T

re,

SN

-
The simplificetions in this integrul, {.0s neglect of the last square bracket

{6 (30) and replacement of 4 (8°) by §a6/6, are possible because of the
~£‘-act'5r € in the integrand. This also makps the integral of order & .

The result (32) agrees with that of the approximate theory, (18).

: ; L EA
‘Adding (31) and (.32), we £ind for the total energy f;%’?
.7‘(/15 R ‘
E - 2w P Y ”14.3“(3_' ..1,,2)} : (38)

' L 5 -1 frt o s?
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This gives the shock pressure as ‘a fumction of the radius including terms

of relative order ¥ <«l which will be useful for the csloulation of the waste

energy. We my also replace Py by the shook valooity Y according to (73
_{pi‘ ? q)(v

B - 21|' x Y [1+£ (l-bn )] (331)

Here again the correction i'uctor in the sqiare bracket differs only slightly
from 1, in agreement with the numerical results reported in Tgble 6.3
A further quantity of interest is 3R/ dr « dF/da for whioh Bguation

(2.37) gives the result
: A -1
OR = AP £ .}/8(64.)
.2 F 6~
- v+ =+ (34
From this expression or direstly from Bquation (2+39) we oan find the density
which turns out to.-be "d
3
3+1 Y‘ht 15 Mz
3 ﬂ-?—* T
'éi 7 -1 ,% * 5 -1 J (36)
We oan also express this density in terms of the Eulerian boaition in whioh
cese we get from (26) ‘
3/(3-1) o
Loz ¥+l ) 1(142°
= 4
This equation shows that the density becomes extremsly low for all points

away from the shock front even if they are only moderstely close to the

center of the explosion. This 1s in agreement with our basic assumption

that most of the material is oconoentrated near the shock front.

Finally combining (2.38) and (2.40) we find in the limit ¥ = 1

2 . (36)
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However, froni the similarity solution we Imow t}‘mt»‘

*

efs S -
Y w a % / LT S ‘ (361)
where a is a constant, and therefore
R
R Y (36

This result is again identical with the result of our approximste theory

given in Bquation (24). ‘ B |
Ve aoe,thorof'aro,thatAour approximate solution is identical with the

limit of the exact solution of the poin‘§ source for .3 = 1 if terms of the

!

reletive order ¥ «1 are consistently neglected.

55 THE CASE OF THE ISOTHERMAL SPHERE

Ve shall now consider the somewhat more complicated problem of the pro-
~ duction of a shock wave by a ﬂa;‘phoria ihich is initially h;utod t; a‘high uni~
form tn;poraturc end then oxe@c pressure on its aurromdima. The relevance,
of this problon of the uotharﬂnl sphere has been dssoussed in (:hnmm-- and
4 and is connected with the 5rffat inrluanc, of energy tumport by redistione
The problem now no laﬁgcr permits th‘nﬁplioation of similarity nrgumntl’
Por this ruien we can mo longer use the ajomorntion'of total snergy to ad-
vantages Inatesd of this we can now assume ediabatic expansion of the iso-
Itheml aphere. This is ocompletely oﬁuiuhnt to an cpplio.tlop’bt the imrgy
conservation law bc»éauu the adiabatia lay itself is based on the sssumption
that there is no energy transpnrt out of the isothermal sphers. |
_ 1et us assume that the material coordinate of the surface of the fso-
‘thormel sphere is r_. The initial position of this surface is then equal
to .r.e At a later time when the isothermal sphers has expanded to 'Ry its

°
average density has decressed by s factor (r/llo) 3 . If we assume that the

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

v-1l7?

[
c 1

density and pressure in the isothermsl aMﬁcro uniform, the pressure will |

be egual to y

gy o, 8
B, Pl /Ry )

(s7
where P is the initial pressurs in the isothermal sphere which ia related

to the total energy by the equetion

3
: ag It Ta)
e ey (37s

We shall now proceed in two steps. First of all wo shall conaider the
case when the radius of the shack wave is not extronmely great compared with

the initial radius of the isothermal sphers, more precisely

1/(3'.;1.) e

/e, K& . am

i o i

We shall show that with this sssumption the solution with aa isethermsl sphers
approachtes the point souroce solution as h‘ro ifn_crguul-‘ 'Mrd:. for large
velues of Y/ro where (370} is not 7513.6. t& u#proxiutibu'xis‘ed in the first
part of our calculation vrs.il break down; but m og than‘ use the results of
~ the last section to obtain R /Y for the surface of the isothermal sphere,
and this will onub.'.lo us to solve the problem for the case of large nlﬁt
of Y/ro- |
(1) case I: Y¥/r, Moderate

If Y/t° 1s not very grest we oan replace the exponent 3 ¥
in 'ﬁu.tion (37) by 3. At the same time we Gan use our general assumption
that practically wll material is Mose to the shook froot and that,therefore,
Ry is very nearly equal to Y. With this up_proximtion we 'fihﬂ from -l;quaﬂ.on
(12) ' | | |

¥z, 1Y Pry’ y 3 (s8)
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This equation can be integrated witheut diffieulty by setting

e, (38)

and o | o |
F ":43' .A%H %’, T (s

Then | | | ; o
Y ol % %—%— | {390)

Then Rquation (38) becomes

| -3 | - |
A% 5 SR o)
This cen be integrated and gives

5DY5:; 2AY%+ B

(41)
where B is a nsw constante
Now the initisl condition 1s, for Y « r, 3 .
C preel *
-2 Y y (42)
o ° , v_ ,
‘or, with (39) and (39):
' ¢ (ro) fos . A ‘ ) (u‘)
80 thet
» Bsg =-AT, L e (42‘))
r "
i '
and finelly . ,
.2 , 2 r 3 -
- W fotl s (LT
' (43)

- $(¥-1) ® (1_ x'oa)
. z ¥
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Equation (43) shors thatrfor large velues of Y/ro, the shook pr;osauro
Ps approaches the wolue riven 1n.3quaticm (17), f.e. the value corresponding
to the point source ‘solution- _Thia result appears rather important because
it showss(1) thet the point source soclution is stable and is approached even
under conditions which initially deviate strongly from those assumed in the

point source solution, and (2) that the simple and well-known point source
solution cen be used at late times for our p!;oblcm including the isothermal

| spheree.
(2) Case I1s ¥/r, Large

Wo know from the discussion of Case I that our solution ap-

proaches the polnt source sclution as .o?n ’aa Y/z‘o )> 1. TWe can then use
Bqustion (28) for the position R, of the surfece of the lsothermal spiere,

and obtain, neglesting terms of second order in x-ln
‘ r 3Y o r 3
oz P -;Q-;-;gm . P(_;__) - (44)

This is the same @aaion which we used in Case I and which we then justi-
fied simply by negleoting ¥ in the exponent of (26). Therefore the further
development is identical with that lesding to Bgquation (4‘5)-

| We have thus shown that Equation (43) is walid both for small and for
large expansions of the isothermal sphero-’ It is possible to derive the dox;-
sity distribution, the pcsitio;n and the velocity, as we did in the previous
section for a point source cese. However, the analytical expressions are
fairly involved and there does not seem to be any particular application for
thems The retlo of the shock pressure to the cemtrel pressure in the iso- |

thermal sphere is according to (43) and (36)¢
P .3

v, )
- P -
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It changes from 1 4in the very early stages to’' 2 in the late stages.
At any reasonably late stage the energy in the blast is related to the veloc-

ity ‘of the shock front in the same way as for the point souree solution.
' f
6.6 VARIABLE GAMMA

The theory developed here can be used to solve the problem of a shock
wave in a medium with varisble ¥ . The assumption is, 6f course, that X -1
ﬁtill remains small throughout. We also assume that the shock pressure is
high enough so that the Hugoniot relations hold in their limiting form.

We shall mgke the further simplifying assuéiption that ¥ is a function
of the entropy only, 8o that it remmins constant for any given mass element
r as soon as that element has been traversed by the shock. This assumption
1s fairly well fulfilled by air, with the value of X decreasing from 1.4
to about 1-2 with inoroasing_ entropy, and latér oﬁ inereasing again to 1l.67.
The more general problem in whick X is a function both of the entropy and
the dens_ligy can also be solved by the same msthod, but the algebra becomes
so lnvol ;ed that it seems hardly worth-while to use the present method in-
stead of' direct numerical 1ntogration.

The pressure distribution Bguation (11) will still be valide However,
the relation betweezn Y, ‘:', and Y wi-ll no longer be given by Bquation
(15)- WQ introduce the pressure at the front and the pressure at the center
of the shock wave separately by writing ‘

: P

g’u

o o

-
' -

B , (45)

2

?(ﬂ) = -%ﬁ'

where 9C and {3 are slowly variable with the shock radius Y. In the case

of constant ¥ we have (cf. 17)
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, : | (46)

o

-
It is our aim to calculste <X and B for a given variation of & with

. the material coordinate r.

Using Bquation (11) we have

P (o) _ 2 . d 47)
"ﬁ--—YNYY- ?’*%Ya‘g‘ (

vhero 99 is an abbreviation for 2. Inserting the expression (45) and re-

qomberivg (7) we get the following relation between X and B .

. 1 dek (48)
A s o s o |
Tt will be shown in the following that o changes very slowly with log Y;
in fact dx/d log Y is of the order ¥ -1 relative to o itself. Therefore,

'in our theory in which ¥ =1 is considered as smal%,we have

g = « (49)

i Therefore,even with varisble ¥ the ratio of the shock prossure to the in-

jternal pressure is equal to 2.

In order to find X for a given function ¥ (r) we use the fact that
' both the g;omotrienl and the material coordinate must be equal to Y at the
; shock fronts We shall calculate the geometricel coordinate R as a function
T of r with the help of the density distribution- The required condition

is then
Y

‘/o
3 - - 3 . = Ys ,
R(r - Y) = d/’ da(rY) Y ‘ (50)

As in Bquation (6), the density of the material element r at the time

when the shock wave is at Y, 18 given by
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“""'-gtl (Pgr, Y)) _%5_%_.(? Sp. (:_,,35{))1/3’ -

VT Yoty (‘*‘Er) ¥)

R

In this equation we have made use of the pressure distribution (11) and also
" of (45) and (49) . Furthermore ,we have put ¥ in the oxponentroqual to 1
in all those terms where this makes an error of the order ¥ =-1. Inserting

(61) we find R as a function of r as follows

S / o) (. )S/XD'(') ﬂa()(»m)

(62)

No dappreciablo error 1s made by neglecting the last fector in this expression
beosuse it is different from 1 on{y over a region in R of the order y -1.
In fact, only by neglecting this last fastor do we get the correct result for
constant J » owing to other negleoted terms in our thoory‘o In any caseythis
last factor is no ciifforont for constant end variable & end can, therefore,
not be relevant for the theory of variable Y . *

With this slmplification we obtain

3 | ‘ 3/,3’(1‘-).'
C e S “T?.fsry(“y " e @

and in paftioular for r = Y we find, after dividing by Y°

P |
x<(Y) = of 2_%{(;) ;3 (1 'iTr)) [j(r)ql]cx (r) » (54)

o « This is the desired equation dotomiﬂixig of (Y)+ It is seen to be a linear

integrel esuat fon.
£ S
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Let us first oonsider the case of constant ¥ . 1In this cese,Bguation

(84) reduces to

Y 3 -1)
(YY) = /«(r) d—-;——) (85)

which is solved by o « constent, witk the vslue of the constent arbitrery.
From previous considerations, pdrticularly Equetion (1'7), we know that in
this cese X = ¥ -1.

Let us now aseume that J 1is constent erd eaual to 31 » for all velues
of r upto ry ; then®( X, t’%/i =1 in that region. Further, for

Y > r) the integrrl Bquation (54) reduces to

3(&, -
(1) 2 g (/0 Y

Y s : y (56)
~543/¢(r) /
¥ r1/ gs;frv Y - (J(r) -1)e(r)

In order to solve this equation we proceed in two steps, similar to the cal-

v culetions in Section Beb. In the first step we shall consider Y/rl 88

moderate so that the Y =1 power of the quantity ¢an be considered equal to
le In this ce® we shall be sble to obtein & general and rather simple dif-
fe;-ential eouation for o{ which oan be solved by nuadratures. As a second

step we shall then admit large velues of Y/rl; in this case we shsll obtain

s sclution only in the speciel case of having a ste'p-wiao veristicen of X .
(1) Case I: Y/r, Moderate
In thie cese we may replece the exponent S/a' in Bq‘uation
(66) by 3. Also we shall expand the first term on the right hand side of
that enuntion in a faylor series. Then Bquation (56) reduces to
¥

kY

.gr .
~ (Y) =™ "3()I1-1)0(1 log ( /r-l) i (67)

‘ Y
+ 3 d log r (¥(r)-1)(r)
4
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To sclve this integral equation we meed only differentiate with respect to

Y or better with respect to

X =z 3 log (Y/ry)

(68)
Then we obtain
%;_ = - (¥%-1)+X(X)(F(x)-1) (69)

This equation can be irntegrated with the ruult

f‘(x 1 fm: )-1) ax*
«) 2 e (("')‘”‘o(uz{‘x)fax’

(60)

The result (60) as well as the differential ggquation (69) show that o
doez not have & discontinuity at a point st which ¥ has one, but only
do{/AX hns s discontinuity. This may be set even more in evidence by |
solving (59) for small v;aluos of E;‘ i.es for points just beyond the place

et which ¥ Yberins to changee 1In thie case we find .

X v
~ X)) = = [1 +of ax (¥(x) .2!1)] (61)

A special case which is of some interest because it is the simplo:‘f
possitle model ¢f a substance with changing i » is cbtained by assuming
that ¥ has the velue ¥, for all velues of r ) ry. In this case (£9)

cen te sclved explicitly with the result

. Yt (¥ L)X |
x %_.1_.[( -1\5 2 ‘1‘1} (62)

Fer émall values of X this reduces to
) e
X = (¥ - .
(8,-1) } 14 (%,-R) x (63)

Another result which follows from Equation (59) is thaet daﬁ/dx is of th
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order = ( Y -1). This result has been used above in obtaining the relation
B =
(2) Case IT: Y/z'1 Large
We shall consider this problem only in the particulsrly simple
cese when J has the constant vslue Xz for all velues of r ) rye In ™
this case EQuaticn (56) reduces to
3(¥;-1)
X (Y) = X (ry/Y)
) 3(%, -1) (64)
PRIt (x)
Similarly,nas in Cnase I,we solve this equstion by dif‘forcntiating with respect

to X, Then we obtain

| 5(11.1)
dX e - (1_1\ P
5 = 1( ) +‘ i,?g_ (xR

o

s(x <1) B
, (a‘ -1) o d(r) X(r) (65?

The integral in this equaticn cen be expressed by means of Iqmtion (64).

Neglecting terms of hlgher order in ¥ -1 we get then
3(¥,-1)

A LAY ("') | (és)

This ecuation is actually even simpler than the differentiel Bquation (59)
which we obtained in the approximate theory of Case Is Using the boundsry
conditicn (= J1-=1 for Y = r, Byuation (66)‘ integrates immediately
to

'3(3’1-1)

= : ¥pul - (B-Y) (e /1) (67)

For smmll vplixes of X ¢this reduces to

68)
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which is identical with the result (63).

Equation (67) shows that the value of X goes gradually from the orig-
inal value 3&-1 to the value 3%-1 wﬁich corresponds to the new value of
Y . It is seen that this asymptotic valug is reached only for extremely

large values oti K/rl- As long as Y/rl is moderaste, the shock pressure
is sti1l influenced largely by the previcus value of ¥ instead of by the
present one. For air in particular we mey tak_e 51 = 1e2 and 13. lede The
shock pressure in a substance with Y constent = 1.4 should be twice ns
grest ae thet for ¥ constsnt and equal to 1.2, for the same radius Y of
the shook wave and the same energy E. Actuslly, when the shock pressure
falls low enougk 5o that Y incresses to 1.4 the coefficient X does not
immedistely increase by a factor 2, but increases very slowly. Physically
the reason for this is that the interior part of the shock volume gtill has
the low velue of ¥ and therefore has e high internal energy for a given
pressure. Only when the hot gases which possess the low Y s 8 sﬁall
part of the volume included in the shock wave will the Ef in the outer re-

gicne of the shock determine the shock pressure.

5.7 THE WASTE ENERGY

Ge I. Taylor has introduced the concept of the waste energy, i.e. the
energy which remains in the hot gases traversed by the shook wave after an
-adiabatic expansion to a pressure of 1 atmosphere. The knowledge of this
waste energy is usefiul because it permits one to calculete the energy which
remeing aveilable to the shook wave at small overpressures.

The waste energy cen be calculated very simply for the point source
solutions Lot us consider a material element which is traversed by th0 
shock at a shock pressure ps- When this element has been expanded edis-

batically to etmospheric pressure b, its density will de
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- +1 (Po )

s R
(69)

/)\
Its temperature will be Pc/ﬂ“.nd its energy content per unit mass:
. ' ¥ -1 1

£ - ¥%, = L [ty ()T 70)
A A (T ) e

In ealculating the energy content, we have used the specific hert ot constent

\

préssure; the reason for this ie that our final stete is obtsined from normal

e

air by heating it at conatant proasuro‘ P, to the temperature ‘Po/jo « Striotly
speaking, in c~der to get the waste energy, we should subtrect from (70) the
» expression Z‘PO/_'PO (¥ =1), but we shsll confige our discussion to the case
whon P »P.
The totsl energy wasted in the shock wave is then

w

: £
Wz 4w Jy dv (71)

We can now uge the relstion between shook pressure and redius, (33). We nre
using this fairly exact relstion because it will turn out that we have to know
the waste energy including terms of reletive order ¥ =l. We solve (33) for

Y;s inserting the result and (70) into (71) we obtain

, X1 fw 1/
W = C E ipo\}—y ot (P'}_x d P, (72)
| ° W
with
C = 2 (1) [1- (¥-1) (g - A 2)] Y /() (7T2a)

~ @ [1- (-0 (1 -dn2)]
nogl?cting terms of relative crder (8-1)2. | Equaticn (72) gives the energy
wnsted Qp to the time when the shock pressure hes fallen to the value Kp,*
Eaustion (72) can be integreted immedistely and gives

¥l
ko (73)

= [H(x-l}fm 2] E K -z_g_}.;}__
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Subtracting this expression from the total energy E we obtain the energy

which is still aveilable:

, | _ o ‘
. Eopr, = E[1 - (K/2) T] (74)

It is clear that for smell velues of ¥ =1 and modarate K, this exbression
is proporticnal te ¥ -1. This shows the necessity of knowing the relation
between p, and E up to terms of the order Y <1; fees of using (33) rather
than (17).

It is souy(hat ‘problomtic what to use for X Clearly the relstion (33)
will break down ;uft too low vslues of Pg’ namoly,whon the limfitling form of the

*

Bugoniot relations ceases to be valide This requires

kY -%-:% | (75)
Setting o

K2 2n/(¥-1) / ‘ | (76)
then n3) 1 '
end using the fact that J =1 is smally Equation (74) reduces to

]

- - n
hd_f. = B (¥-1) logm | | (77)

Of course the svailable ensrgy will be further reduced as the shock pressure
is reduced closer to stmospheric pressure. In fact, Penney has shown that
the dissipation of energy continues indefinitely as the shock wave expande'

(see Chapter 8, XSGtction 8.7). Tt is therefore not possible to give any accurste
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: definition of the percentage of onarg.;y wasted but it would be necessary to
lpocir;' the shook pressure for which this statement is made. 1In order to
obtain the pcteo?zt-ge wasted for shoock pressures of the order of one atmos~
phers, it would be necessary to follow the shook wave through the region of
intermediate pressures which can adeguately be done only by numerical methods
(see Chapter 7).

However, it is cleﬁr from our Equation (77)‘ that the energy available
for the shock wave is smaller the smaller ¥ =l1. The fact that the eir has
e small value of Y at high temperatures lesds to 1néreased dissipation nf

" energy at the shock and,therefore,to . i':latively smaller blast wave at large
distences. This iz the main reason why the bla;t wave from a nuclear explesicn
is less strong at & given distance then from a TNT explosion libersting the
sanme total energy. In the latter cuéo the temperstures resched are only mod=-
erste, and the energy wasted is,therefore, less than for the nuclear explosion.

The greater wastage of ;urgy for smaller ¥ 13“910; related to the re-
sult oht.timd in Sectien 5.8; nm;nly, that the shock pressure after a sudden
change of ¥ does not correspond to the mew value of ¥ but is rather olose
to the value for the original walue of ¥ . This slow variation of the shock
pressure is in turn important if one wents to calculate the waste energy for
a gas with variable ¥ « 1 .faot, if it were not for this gradusl chenge,
geses might occur in which the waste energy would be grester thaﬁ the total
energy availeble which would be obvious nonsense. The change of ©( derived
in Section 5.6 is just agrfic;ently "J{g&;dupl to keep the wnste energy alweys

below the total aveilable energy.
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‘CHAPTFR 6

EFFECT OF VARIABLE DENSITY ON THE PROPAGATION OF THE BLAST WAVE

—p——

i
i
}
i

Ke Fuchs

6«1 INTRODUCTION

We have seen in preceeding chapters that there is a considerable range

in which fairly reliable predictions about the propagation of thc;blist wave

may be made. The range extends from somewhat below one million degree shock :

tempersture to about 6,000 degrees. Above 1,000,000 degrees the isotherrml

sphere extends up to the shook fronte If r, is the radius of the shock

front at the time when the isothermal sphere separates from the shock, then | W

the sheck prgsauré st a given.radiua Y> ro 1is proportional to (see Xnua~ . *
Y ! i

tion E.43)

r

.. “(1 - ro® /ov3) . (1}

— i

and therefore the effect of the isothermsl sphere is negligible even. for

moderate values of !/rol

Below £,000 degrees the formstion of an opaque layer at a slight die- o

otherwise escape, and therefore rediatlicn trensport of ensrgy hes & cconsider~-
gble effect on the propagation of the shocks Furthermcre,below 5,000 degrees
the luminosity comea_fr;m some distance behind the shock front end this makes
photogrsphic observetion of the shock front diffieult.

Betwser about 200,000 degrees and 20,000 degrees shook temperature tpo
icnigation of the L-electrons proceeds snd within this range the variation

of & 1is not very pronounced. This,therefore,appsars to be the most useful
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ranges

The corresponding shock pressures are

T 1,000,000° 200,000° 20,000° 5,000°

Toa Pe 360,000 50,000 1,600 200 atmospheres

"?Pserving that the shock radius is roughlj proporticnal to the inverse cube
?root of the shock pressure, this gives & fairly comfortable range of usesful
observation.

However,there are some factors which limit the rarngee (ne factor is
fho height at which the explosion tekes place. When the shock reaches the
ground a reflected shook goes bsck and only those pafts ¢f the shock sphere
which have not been reached by the reflected shock, cen be compared directly
‘with the theory. This was particularly serious at Trinity, but would also
*present some limiteticn in future tests, since it is impracticable to raise

the gadget to a great height without interfering with other experiments.

At Trinity the gadget was set off at a height of 30 meters.

The other limitstion arises from the fect that initially the propags-

' tion of the shook is affected by the meterial of which the gsdget is composed.
Although the dimensions of the gadget ere rather small, the effect persists
over a oonsiderable distance, sirce it is the mass in the gedget compared to
the mess of air engulfed by the shock which matters.

In partioular,with a view toward an eveluation of the energy relesse

in the Trinity test, we shall attempt in this Chapter to get cver the second
limitatione We consider a blast wave originated by a point source, travel-

" ling through material of verlable density. We shall make some simplifying
assumptions:

(1) The dernsity is supposed to depernd on the redius cnly, and the

varistion of density is sssumed to be contimious. We disregﬁrd,
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therefore,any ssymmetry in the constructicn of the gadget
and the exact dotails of the transmission of the shock from
the gadget intoc eir are neglected. Neither of these two
factors cen have appreciable effect at s sufficiently large
distance.
(2) We mssume thet ¥ = 1 1s small compared to 1 and use the
essential idees on which the approximation of small ¥ =1,
discussed in Chapter &, ie based. Insofar as this epproxi-
meticn can be compared with exact celculations of a point
scurce it was found to be very good, even if )’ is S/Sn
However, it does not necessarily follow from this fact that
the approximaticn is equally good in more general cases. At
mf“ present we have no means of estimating the error.
(3) We assume that ¥ is constant. This is not a bad assumpticn,
since we are mainly interested in the region from sbout
200,000 degrees to 20,000 degrees, whare ¥ does not wary

toc muche

6.2 NETHOD OF ESTIMATING ENERGY RELEASE BY OBSERVATICN OF THE

SHOCK RADIUS

BeTore proceeding to the snalysis of the problem with variable density,
let us consider the applicetion of the methed of estimating the energy re-
lease in the simpiest case when the similarity solution for constant density
holdse The derivation given below is due to Bethe.

If ¥ -1 1is small, the kinetic energy may be neglected and the totel

energy is piven bty

- 2
E f 73 dv (2)




.
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a8 pointed cut in Chapter &, the preésure is constant and equal to 1/2 the
shock pressure p, oOvVer the greaster part of the vclume. Hence (1) cen be

repleaced by

E - 3} iggj. LS | (3)

where Y 1is the shock radius. Using the Hugoniot conditicn for strong

ghocks
P = X:+l;uJo° - (
we obtain for X -1
’ 2 .3
2z AP U Y :
E [ T 07-—:1—-—- ? U = Y (5)

Here U is the shoock velocity and J°° the normel density of air.

Since E is constent, we can integrate (5) and find

2
t - -5- L (6)

; R .
If the finite wvalue of ¥ =1 is taken:into account, the fector 2%/3

should be replaced by a constant B (¥ ) which differs but 1ittle from

" 2m/3. B(f ) is the quantity tabulated in the last line of Table 5.3,

Chapter E.

¥
16, therefore, we plot the cbserved values of Y/2 against the bime

t, they should lie on a straight line and from the slope of the line we can

immediately derive the totel energy.

1

6.3 INTEGRATION OF THE EQUATIONS OF ¥OTIONe

We chall now turn to the cese of variable density. If ¥ -1 is small

- the kinetic energy is small compered to the internal energy. The internal

- energy per unit volume is
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p/ (¥-1) (7

¥ow p is practically constent over the larger part of the volume of the
shocked sphere; it varies appreciebly only in the region where most of tlﬁ
mase is sccumulated, i.e. near the shock front. If we integrate (7) over
the irolwm. we caen disregard the small shell of wvariable pressure near the
shock front and identify p with the pressure p{o,t) at the center of

tﬁo sphere. Then the total energy E is given by

)
E = i]l;’.’fj P% (8
Using Euler variables R, and Lagrange veriables r, the equation rof motion
is

PP R o4+ B 3T o= o (9)

L7

where _A is the original density of the mass element which was at the redius

r, before the shock resched it. Integreticn of (9) yields

Y (3]
p(r,t) = Py * j (-g.z)t f’(r)rz dr (10)
. ‘.

where 'ﬁ/Rz 1s to be considered as funoction of r for fixed time t. Py
is the shock pressure and Y the shook redius. Now, neesrly all mass is
near the shock fronte Hence 'Rz/Rz is practiomlly identicel with ?/Yz- '
This will no ],’gnge»r"bo true if r becomes very small, but then the contri-

bution to the ﬁntepgral (15) will ‘'be smalle Hence we may write approximetely

(R Y
p(r,t) = Py * %2 jf(r) 2 ar (11)
r
In perticular et the centre
plo,t) = py + -5-2 M (12)
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where

Y .
uiy) = \!f(r) P2 oar (13)

iz the total mass per urit solid angle within the shock resdius.

The shock pressure is given by the Hugonict condition

P, = _.2.5 PO | (14)

and U §s the ehook velooity

U =« Y | | (18)

Since we assumed ¥ nesr 1, we may omit the factor 2/(¥+1) in (14).

Considering U as funotion of ¥, we have

°e du
- U == )
Y 5 (16
Substituting (14) and (16) into (12) one finds
2 v au 1 d 2,2 :
o] t) » U * ow * ——— M - — U 3 ) 17)
plo, f Y2 ay W aw an
Combining this equation with (8), we find
e
d 24,2 3 M
o) . 2l (Y- Z E 1e)
dy ( 2n ( Y (
and therefore
. Y |
2 3 E . u(Y '
U= oy (¥ 2 Ul S ¥ 9 (19)

The lower limit in the integral is derived as follows:
If Y is small, A may be considered constant arm equal to its value at

the center. Then (19) reduces to

. 7;-'_ (¥ -1 }r% (20)
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which is the Eguation (5) derived for a point source and cona‘tant‘ density.
as it should be. 1If a conatent of integration were added to the integra-
tion in (19) we vfould not obtsin the correct behavior for small shock rediie.
In addition,the kinetic enerpy 102 would  become infinite for Y - 0

contrary to the assumptions made.

6.4 EFFECT OF VARIABLE DENSITY WFAR THE CENTER ON THE AIR SHOCK

K4

We asaums next that the daniity has an arbitrary distributicn S (Y)
up to a certain radius Y' and constant dénsity Lo beyond. We wish to
know the propegation of the shock, after it has resched the region of con~
stant density. |

If Y>¥Y', wa have | v
e 2 1 3 3 ) v
4 " f (Y' Y dY bl 3‘ .Po (Y’ + YO ) (21
Y ‘ .
where Y, 1s the radius of a sphere cocupied by the excess msterial at the

center, if it were spresd out at the density P 4 f.e.

Y : |
L p YQ3 . ‘f {f'(r) - J%} Y? gy (22)
3 d
Sirilarly ' ,
e ) 3 . d §
f%‘" ar - -;- PP . fi;’- I {f(r) - j’c}fz Y (23)
o : ° o

Partisl integzration yields

f‘hig} dY ".%fo Ys*%onos(hY-'gn;} (24)

o]

where ¥ is the logarithmic average rsdius of the excess material

'L B Y
An T - )[Jb:r(f(r) .-'fo)an/J(f(Y' —fo)rz ay (26

Substitution of (21) and (24) into (19) ylelds
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K -1) s PN
U¢ . é,%.{;—lﬁs £(Y* ‘ (26)

3V

where

)2 1« 3 (v /Y (YY)
£V . {1 - (Yb/f‘x_)af-g (27)

If £ = 1, thre formula {28) reduces to the egquation (5) for constant
density. f, therefcre,is the correchtion factor by which the shock velocity
is changede.

‘ It is of interest thet the factor { depends strongly on the radius
Yo+ The latter depends only on the totel mass of excess material at the
center, but not on its distributicne This is rether fortunmte, becsause the
distrigutivn of matter in the gadget is changed during the implesion and
it wculd not be simple to celculste the correct distributione The radius

Y on the cther hand depends on the distribution of matters However, since

it is only a logarithmic aversge, it is nct very sencitive to small errors

in the sssumed distribution of matter.

For the Trinity test the gadget was loomted on a tower and we are most
interested in the expension of the shock before it hit the ground. The ef-
fect of the tower on the average shock radius may be bracketed between two
limitss On the one hand we may neglect it. On tre other hand, ws may as-
sume that the matier In the tower is spread with spherical symmeitry around
the gadgete This leads te the following problem:

The densiity distribution is arbifrary up te a radius Y' as before. )

Serond thet radius the density is gliven by

L . Py {1 LY 2/1'2} for Y » Y (28)

The formilae can be evalusted for this case in a menwr similar to that em~

gloved shove; one finds Tor the enrrection factor ¢
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® 3 - ) ‘
143 Yo {1‘1 R% 1 W R R (148n L)]
® A

Yo [»] Y' . ?
1+ % 11+ ( - : (29)
Y3 Y2 Yo Yo

In order to be able to neglect the effect nf the Lower, we require thrat in
) the regisn in which nessurements are used, the formulm (29) should be for
practical purposes identical with the formula (27).

If Y 1is sufficien™: large compared to Y , the excess mass near the
oen€qr becomes negligible compared to the total mass within the shock radius
and the solution must approach asymptotically the similarity solution. This
is indeed the case since f tends to 1 for large Y.

For the similérity solutlon we have the exact formula valid for any

value of ¥ . Tt can be wriiten in the form

E (¥-1)
A o *
where B (X) differs only little from the value Zﬁ/ﬁ- B as function of
Y is tabulated in Chepter Bi It is identical with the quantity given In
the last line of Table E.3.
it ssems resscnable to fix up the formula (26! in"8uch a way thet it

4gives the correct asymnntotic behavior; i.a> we put

2 E (Y- 2
N = T T f \ _)
J 5 A (e

In particular, if the formula is used in the reglion where £ arproaches 1,
the effect of a finite (¥ =1) on f will be a small order effect and then
it is perfectly justified to include the linite (¥ -1) in the main term but

to neglect it in £.
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6¢5 APPLICATION 70 THE TRINITY TEST

The ocorrectinn factors { have been evaluated for the conditions in
the Trinity test. TFour functions f have been caloulated as follows:

In the first instence only the matarial in the gadget.itsolf wag in-
cl.ded» For the second turve the X=- unit wés ineluded. This unit does
not have spherical symmetry. However,the difference between the two curves
was found to be gwall.

Next,the platforﬁ on winich the gadget wns located was taken inte sccount,
and finelly the towere Again thess two curves did not differ appreoiably

#
from esach other.

Yowever thers was quite an appreciable difference between the curves
which did or did not include the platforme Since the platform has no spher-
ical symmetry, the difference between the two ourves represents an unavoid-
able experimental errore Clearly for future tests it would be desirmble to
eliminate this source errore

Values of the shock velocity on an arbitrary scele calculated with the
help c¢f these four correction factors are shown in Figure 1. For compsrison

a curve which neglects the variable density is also shown. The numerical.
g J

data for thesa curves are:

)

Gadpet only: Yy = 8.58 m, ?' = 036 m

Gadget and X-unit:s Y, = Be75m, Y = 0+37m
Gadget, X-unit and platform: Yo = 11.9m ¥ = 1.0m
Tower: Y' = 2 m, Y, = 5¢3 me

It will bs ncticed that the correction factor f is below 1 for small

shock vradil and aﬁova 1 for large radii. The explsnation is as follows:

Fhen the shock passes from the zadget into alr, the shock velocity increases

rapidiys  The radgzet mamterial, which was shocked by a slow shock, must now

i
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Figure 1

Shack Velocity as Punction of Radius
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be spoeded up and this regquires thet the presaﬁro gradient behind the shock
be reversad. Thus the average p}essuro, instesd of being one half the shock
pressura, (seo oquaticnlﬁ-la), will now be higher than the shock pressure.
Eventuslly,as the air shock slows down,the gadget material must aggin be
deceleranted. 3ince there is now more material, the pressure gradient re-
quired to do so must be larger and the average pressure drops below one half

the shook pressurs. Hence the equation (8) may be written in the fora

3 YS
4n Y n 2 \
o — & —— by 32)
E 3 r -1 P average 3 7—‘—{ p./ ' : (

where £ <1 at small distance and f > 1 at large distance. With the help
of {14}, it is found immediamtley that f as defined here is identioml with
thé correction factor f.

In the early ntagoé the heavy materlal at the centar has,therefore the
tendency of holding the shock back, until it 1s accelerated sufficiently to -
follow the shocke In this stage the assumptioﬁé on which the theory ie basca

are not very well satisfieds Combining (31) and (27) one finds for Y ! Y,

-~

. 3F -1)
2 3 (¥ -1 7

Y ,
= 5 —-— Y 33)
U By) A, ¥ n(? J# for YLL Y (

end the shock velocity varies little with tho&;hook radius. However, the
essential reamson for the sccumulation of matter near the shock front lies

in the rapid decreass of shock velocity with radius, which is accompanied

by a corresponding decreése in entropy. MHence,there is normally a region

of high entropy and léw densgity in the inside of the sphere. This is no
longer correct if the shock velocity remains constant over an spprecisble
distance. For this reason tho'Fheory iz not reliable until the second phase
i{s reached, and the shoock slows down againe In this phase the heavy material
continues to press outward and,therefore,raises the shock velocity above the

value expected from the similarity theorye The magnitude of this effect

-
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can be judged from Figure 1 by the fact that the shock veloocity ourve at
one point touches the similarity curve for 2.8 times increased energy
release. It is,therefore,easily possible that the energy relesse be over-
estimated by a factor of this order, if the effect of the gadget on the
propagation of the shock is n;glected- | V

From the shock velocity we obtain the shock radius as function of time

By means of one integration. Using the factor (27) we find

1 s(¥) A v.° 12 Y ¥
to- JE W = 17F (XSDQ} F('{"o' -‘?ﬂ (34

)
_ 3
F (2, 2, = S (‘3—1‘ *32.: =/=o’1/2 ds (35}

If 2z 1is large compared to 1, we obtain asymptotically the formula for
the similerity solution

/,

/2 Lo v}
s/2 2B %) fo ¥ . \
. t = 5y <D ; if 2> 1 (38)

’ 5
The function F has been eyslugted by numerical integration for two

2
F = 5

vnlues of z,, obtained if either the effect of the gadget only is inclnded
or if the platform is also taken into account. They are shown in Figure 2

where YS‘/2 is plotted against ¢ for an energy release of 21,000 tons

of T, 1/{ ¥ -1/ was assumed to be 4¢3. The value of 21,000 tons was

chosen in order that the experimental points for shock radii between 20 -

end 30 meters should lie between the two theorstical curves. In this re-
- .

zlon the experimental points lie on the dotted straizght line shown in

Figurs 2.

The experimental date were obtained by Meck's group from photographs

of the ball of fire by means of Fastsx cameras (see Chapter 18J.

The shock pressure is obtained from (14) as soon as the shosk velocity
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Figure 2
15/2 as Punctions of t.
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is known. It varies between 15,000 = 2£,000 stmospheres at Y = 20 nmeters
to 4,000. = §,000 atmospheres at 30 meters and is,therefore,well within the

range postulated in the introduction.
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CHAPTER 7

THE IBM sowu.@ F THE BLAST WAVE PROBIEM
K, Fuchs -

7,1 INTRODUCTION
The discussion in the pmcoding' chapters showsthat the problem of
the propagation of the blast wave from a nuclesr explosion is quite complicated,
Bven if we disregard any transport of radiation, appreciable cemplications arise in
view of the large variations in temperature and entropy, We may roughly divide
the range of shock temperatures into two regions, Firstly,the region fromsbdnt

one million degrees to about three thousand degrées absolute, Here dibsochﬂﬁn,

of molecules and ionization of the atoms takes place, Consequently K-» | ia .,
fairly small but;var:les with temperature, Below 3000° Y is less variable an:d
approaches eventually the value 1,4 in normal conditions, ’ t

The temperature varies of course also along an adiabatic, Hoqrever. the
total variation betueen%tihe shock pressure and one atmosﬁher’e is noct excessive - :
aboyt a factor 2 at shock temperature of 3000° and slightly more than a factor
10 for a aﬁock temperature of 1,000,000°, The effect of decreasing temperature
along the adiabatic on‘the Qegree ‘of fonization or dissociation is partly
balanced by the decrease in density, For this reason the variation of .4 along
an adiabatic 1s not as pronounced as one might expect from the change in
temperatyre, For this reason qualitative statements made about the conditions at
the shock froent hold to a large degree also for the subsequent expansion behind
the shock,

A temperature of 3,000° K is reached in the shock when the shock pressure
is about; 80 atmospheres, (For an energy release of 10,000 tons of INT the

shock mdius is then 80 meters). We are however more interested in the pressure

region from about one atmosphere down (corresponding to shock radii of 500

meters and more). It was felt that the sxact energy distribution at this early

Vil -1
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e aw.ld not ha.ia an appreciable effect on the pressure d;stributim in
Mr stages as long as the energy distribution is at lesast roughly correct,
Wor thils reason it was decided to start an IBM calculation at this point and to

Wto the initisl conditions for this instant by means of the approacimations
! d in the preceding chapters, The approximtions made includes

: Ml’llﬂ see section 2)

e (1) An approximte treatment of the isothermal sphere, In

mtml fach the isothermal sphere at this late stage has no significant ﬁfluence
the pﬂbphgution of the shock, However, in the first inatance we were

mwd in the islaﬁheml sphere as suchs in the secand instance the

_Mml sphere greatly facilitates numerical computations, since it rednoos '

wtal range of temperatures and entropies which exist at any given mmnt.
‘jﬂg'iwmtes the singuhrii.y ‘t;t the centrcy.

’: (2) Y wss assﬁned to be ccnstam. and an average value of 1,25 mas
‘.I'his is probably the lsast satisfactory of tm asstmprbions made; but

y nr the fact that we did not requirs a very accmt«o estimate of the imitial
,‘,,%ﬂmm. and that a onlcuhtion with variable ’f 19 Mrdly feasible without |
1 " J:%cmmga or a great amount of canputation, thia ummpticn seemed justiﬁed

" (3) ¥~! was assumed small,. ‘lhin aaamptim 18 not essential, but
@rror introduced thereby is small and it has the advamgo that the

rual sphere can be included as an integral part of the calculation,

| Fw the IBH run it 1s of great advantage if tha variat.ion of the pressure
W an ad.iabat is a simpls runct!.on of the density, Wthe variation from

“ Mubatic tc another may be given in numerical form, Tba reason ia that in

e 3

~;mmuq case’ the adiabatic of each mass point is given by one or two constants and
Mﬁ mmmm only a table of these constants as functions of one variable

’@walem in which the equation of state is given completely in numerical form

mmndt yet been tried on the IBM machines),
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It would be difficult to find a simple presentation of the equation
of state covering the whole region of adi_nb@tics between the shock p:l'assuré
curve and normal pressure, However, with the limitation to ahook pressure -
below 80 atmospheres the demand of a simple representation becomes reuiﬁlo;
In particular this is true for the adiabatics which start at shock pressures
below 80 atmospheres, since then no fonization or dissociation occuri. Ye
require of course also the adlabatics of the immer mass points, which were
shocked by stronger shocks, However ws require only the tail end of these
adiabatics, PFurthermore,the highest entropies are eliminated by the equalisation
of entropy inside the isothermal sphere, The equation of state which has been
used is discusased in Chapter 3, |

The requirement of a simple equation of state is the principal reasm
for starting the INM run at such a comparatively hte‘ stage,

Although radiation transport has been taken into accomﬁ"imotq as
it 1s responsible for the formaticn of the isothsrmal sphere, no allowance has been
made for the radiat..im transport frgm tho‘:laotheml sﬁhere into the region in which
NOz is formed, As w:plﬁined in Chapter 4, 8ection 4, this transport of energy
becomes important when the shock radius has reached about 100 meters and it
should affect the propegation of the shock shortly ﬁ\emfbe‘r; The opacity data
required for the purpose of calculating this transport are not sufficiently well
known, In neglecting the radiation transport altogether wa are poasimistic. since
it is of advantage to have the energy close to the shocifront, Then the shocg
pressure decreases less rapidly than it would otherwise, The increasad shock |
pressure would naturally lead to a greater degree of dissipation of energy by the
shock so that at larger distances the shock pressure might drop .aga.in more rapidly
and at sufficiently large distances the effact of the radiation transport on the

shock pressurewould be reversed, At present we are not in a pamsition to make any
definite statement about this possibility, ‘
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The IBM run was intended for an energy releass of 10,000 tong of INT,
Owing to some unfortunate circumstances related in Section 3,$n§ definite snergy
can be attributed to the run throughout its whole history, At sufﬁciently large
distances the energy should be.assumed to be 13,000 tons.; Other energiea can,

of course,be obtained by the usual scaling laws,

7,2 THE INITIAL CONDITIONS QO THE IBM RUN

The initial conditions of the IBM runwere prepared by Hirsohfelder and
Magee, The principal data are summarized below without going 1nt.o the detaila
of the r‘alcula*ion All data are for an energy release of 10,000 tons of INT.

7,2-1 The Isothermal Sphere

The lagrange radius ro of the isothermal sphere is given in terms of the
shock radius Y by EBquation 4 of Chapter 4, Section 3. It can be written in the
form o

3
o[ 11.85 ¥ 7°° -601.5] Y3 100 em
, : (L
Here both r, and Y are given incentimeters, It was convenient tq chogse a
simple value of Y/r, and the value 4 was chosen, which corresponds to a shock

pressure very near to 80 atmospheres, Then

» (2)
s = 1937 om, Y g 17987 cm, Y/!'o = 4 (

The actual radius R of the isothermal sphere is obtained from tha conservabion

of mass, B8ince we assume constant density S and constant preasure in the

isothermal sphere one has

J’o S % PR’ . (3)

r, as function of Y is shom in Figure 1 of Chapter 4, It will be seen that T

.varies very slowly after the shock radius has reached about 10 meters and the

effect of the isothermal sphere on the shock is negligible a short while

thereafter, Beyond a shcck radius of 80 meters r, varies very slowly indeed,
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According to Figure 2 of Chapter 4, it increases froiii 20 meters to 27 meters as
the pressure in the sphere dacreaéés to 1 atmosphere { the analysis is no longer"
valid for such small pressures, but it indicates the order of magnitude),

For this reason it is a good assumption to asswme that r, is constant,
The actual radius R, then varies in accardance with Kquétim 3 only because the
air in the iscthermal sphere expands., ‘he initial value of R, is 60 meters (see
Figure 1 Chapter &), |

The initial condition of the isothermal sphere is given by the fﬁllqwing‘_.,

o

quantities;
Temperature = 49,000 K
Pressure. = 37,0 atmospheres /’ o
Density = 0,0392 x normal density
!ntropy.As/R = 85 e

Internalenergy and enthalpy B/R = 1,487 x 10°, H/R = 1,782 x 10°
Ro. = 160.23" meters, ro."=‘19.9? ‘meters,
These data were cbtained fram a calculation indicated below,

7,2=2 Initial Pressure and Density Distribution

It ms been shown in Chapter §, Section § that the isothermal sphére ¢an be
treated on the assumption of small ¥-1. The small ¥~ | approximation has been -
checked for a point source solution (see Chapter 5, Secticnsd !md 4) and it was
found satisfactory. in the region in which we are interested, Since the solution

which we requim is in any case very ‘c,iou to the point source solutions sxcept in

the neighborhood of the isothermal sphere, the errar of the small(¥-fapproximation

is smdl, -

¥o snall not go into the details of the caleculation, The analysis is rather

i{nvolved, but the lines along which it proceeds are sufficiently indicated in
Section 5 of Chapter 5, The resulting equations had previously been evaluated
for two values of ¥ in order 10 see how sensitive they were to a change in Y .

The values chosen were ¥ = 1,2 and ¥= 1,3, .
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The values for ¥ = 1,26 were then obtained by interpolation, In this way
we find the initial pressure and density distribution as well as the velocities
and the Buler coordinates of all mass points, |
. Some adjusﬁnents had to be made on the initial conditions, A minor

adjustment arcse from the fact that the small ¥ -t treatment of the isothermal
sphere does not agree exactly with the treatment given in Chapter 4 Section 3,
The érro‘r. which imay be due to eithér method, may be seen from the values of
ko/x,_ ‘the small ¥ ) treatment gives Ry/Y = 0,850 compared to 0‘;761 by means of the
other :#:ethod. The latter value was assumed to be more reliable,

f‘xirtl;ermore , at the start of the IBM calculation the valus of 7 at the
sh'ockfrox‘it is larger than 1,25; instead of a compression ratio in the shock "
7 - 9,as would be expected for ¥ = 1,25, the value obtained from the correct
Hugoniot curve for a pressure of 77,25 atmospheres is 3/ A = 7,24, The
density contour ns,therefore,é.djusted'to give the correcf, compression ratio at the

shock, and the correct radius of the isothermal sphere, This required also an

adjustment in the Buler coordinates R, since it is essential that the initial

conditions satisfy the equation of continuitys : .
A R 4R
= T v
/o e dr (4)

where 'r is the lagrange coordinate,

‘The initial velocities were then calculated directly from the equation

3Cr-Nfy
w=Y, L+ (YY) /
Coan® T g(;,,,/y)ﬂ"ﬂ/*]%

(5)

%

i which follows from the small ¥ —| approximation, Here the correct shock

velocity Y for the given shock pressure was used,
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7.3 THB TOTAL ENERGY

The methods used to establish suitable initial conditions are in parts
somewhat arbitrary, For this reason it is not surprising that the total energy
corresponding to these conditions turned out to deviate appreciably from the
assumed value of 10,000 tons of TNT, Unfortunately the energy was recalculated from
the initial conditlons only after the IBM-run ‘hid been completed, It was then found

/

Since the initial shock pressure of 77,25 atmospheres at the initlal shock

that the total energy was }3,500 %ons TNT,

radius of 79,9 meters corresponds to an energy release of 10,000 tons, we have no
remedy for the discrepancy, All that cari be said, is that the shock pressure versus
distance curve corresponds to 10,000 tons up to 80 meters shock radius and to 15.5‘00
tons for large radii, ¥or intermediate radii it should slowly change between these
values, | -
Actually the discrepancy is slightly less, A check of the total energy‘

at a shock radius of 2000 meters gave only 13,100 .tons, The "loss® of 400 tons is

entirely due to errors of the ISM-run and is of the order of magnitude to be

expected from this source,

For most purposes the total snergy in the IBM-run should be assumed to be

sbout 13,000 tons, except at small shock radii, where 10,000 tons is more gppropriate,

. » .
7.4 THE IBM-RUN ¥ -
The hydrodynamical equations are
¥R 2 2%®.z0 - |
Ly ! j;f o " - (8)
P/P . R 3R w
¢ r2 dr ; '

In addition we have the equation of the adiabatics, which were put in the form

P
o (8)

< 1.5
‘%‘; =8 (“‘;/g”“) +h 3
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where g and h are nmumerically known funct.ioﬁs of the entropy,

P _ The boundary conditions are that the velocity 2R/ t wanishes at. the
cent.er and that at the shock.rudhs the Hugoniot conditions are aatisfied The
latter detemine also the entropy of any mass point as it passes through the ghock.
front, The eritropy is assumed to remiin constant, so'that essentially g and h are
given functions of the lagrange variable r; | | |

The methods employed in solving the system of partial dii‘femnbm equations |
by means of the IBY machines are explained in Volume 2 of this series, 'I'he

method used first was suitable as long as the shock pressure differed appreciably
from one atmosphere, but it becams erratic as the overpressure bacm small, The

_method was therefore changed, 80 &3 to calculate changes in density and pressuré

rather than their absolute values. This oha'nge of procedure quickly suppressed
the erratic behavior of the pressure,
The rur; was continued until the shock r-adius had reached a wm of 6’270

T . " meters, At that instant the ovefpressure in the shéck was 0,0251 atmospheres, 'I’hé

o positive pulse was 290 reters long and the negative pulse 760 meters,  Since the “
further propagation of the snhcck is influenced dt these low overpressures only
by the pesitive pulse, the approximations on which the semi-acoustiec f.heory of the
next mptaram based, are well satisfied, They are (1) that the overpressure be_

%

small compared | ! at,mosphere, and (2) that the length of - the pmaaure pulse be
»

small compared to the shock radius, Bven the application of ths semi-acoustic
theory to the negative phase is not bad, Hence, the IBM-run was discontinued and.

the semi-acoustic theorywas used for the purpose of continuation,

-

7,5 RESULIS

.
—— . N

The shock pressure ‘as a function of the distance of the shock front from the

tenter of the explcsion is shown in Ffigure 1, |
In this graph all date have been collected from the warious chapters, From
a shock radius of 10 to 80 meters the similarity solution has been used, The
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Figure 1

Shock pressure versus distance for
nuclear explosion. Time 1s given
in eseconds, T = 0 1»s 0,012 after
start of explosion.
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dotted lines show upper and lower limits foz; the effect cf the gadget material on
the propagation of the shock, as calculated - for the Trinity gadget (=ealed down
to 10,000 tons of TNT), In this region the curve corresponds to an energy release
“of 10,000 tems,

For shock radii i‘rom 80 to 6300 meters, the shock pressures are obtained from
th‘e.\IBM run, Here the total energy is between 10,000 and 13,000 tons, the upper
véiﬁe being corréct at sufficiently large distances, The time of arival of the
shock is indicated at various points, t = 0 is the start of the ISM run which was
0,012 second after the explo‘sion.‘

Beyond a radius of 6300 ‘meters up to 67,000 meters, the semi-acoustic
theory of the next chapter has been used,

A number of curves showing the pressure at a fixed distance as function of
' time are shown in Figures 2 to 9, >Grapha of the pressgure versus distance at a
fix‘ed time are shown in Figures 10 to 18,

The duraticn of the positive phase of the pulse as functicn of the shock
‘pressure is given in Figure 19, |

For comparison with measurements at Trinity we have also made & graph of
the arrival time of the shock at varicus distances, It is most convenient to plot
the shock radius divided by the arrival time as function of the shock pressure
divided by the normal pressure, since such a graph is independent of the energy
release; This graph is included in Chapter 19, It depends,o? course,
on the normal velccity of sound in the given circumstances.co, For the IB¥-run
co = 347 centimt_eré: per second, |

Finally,there are shmm in Figure 20 the poeitive’ impulse I+ and the
fraction of the total energy which is left in the blast as functions of the shock
pressure divided by the normal pressure, The latter is independent of the
energy release, The positive impulse has been scaled to an energy release of
40,000 tons in free ai;‘ (or 20,000 f.ons on the ground) for the purpose of

ccfumrison with cobservations at Trinity,
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i
Figure 2
: .

- Pressure versus Time for Radius 170.7 meters
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R | A - PMgure 3
' Pressure versus Time for Radius 223., meters
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. Figure 4
Pressure versus Time for Radius 332 meters
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Figure § |
Pressure versus Time for Radius 466.5 meters
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. Figure &

Pressure vorsus Time for Radius 682 meters
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Figure 7
Pressure versus Time for Radius 1224 meters
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Figure 8

Pressure versus Time for Radius 2031 meters
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Figure 9

Pressure versus Time for Radius 3586 meters
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Figure 10
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Figure 13
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Figure 14
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Figure 15
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Figure 16
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Figure 17
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Figure 18
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Figure 19
Deviation of the positive pha‘se of a pulse at a
fixed distance
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Figure 20
The positive impulse and the energy in the blast.
(IBM) run scaled to 40,000 tchl.
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7,6 COMPARISON WITH TNT EXPLOSION, EFFIGIENCY OF NUCLEAR BOMB

One purpose of the IBM-runwas to find the effi ciency of a nuclear bomb
compared to an explosicn from anequivalent charge of TNT, In the nuclear explogion
a greater amount of energy is used for the purpose cf heating the air near the center
of the explosicn to high temperatures, A large fraction of this energy is useless-
for the propagation of the shock,

S8ince no comparablg IBM-run exists for a TNT explosion, we compared the
results for the mii:lear explosion ﬂth experimental data, For this purpose, the
experimental curve prepared by Hirschfelder, Littler and Sheard was used, It is
based on experimental data for charges fired on the ground, and for shock pressures

in the range from 15 to 2 pounds per square inch, The charges varied from 67

to 550 pounds, The curve is given by the expression

38 85 ;5760
+ *—;2 — + P “"';s“‘

Ap .

X

(9)
Y/w,%

"
[H

(10) =
Here Y is the shock radius in feet; w,the weight of the charge in pourds, ard
Ap the overpressure in psi,
For lower pressures Hirschfelder, Sheard and Littler used the asymptotic

formula '
364C
Ap = log,  x - 0a%28

(11)
The constants were obtained by fitting tc the low pressure end of the curve (9).
The a§ﬁ1ytica1 form of tﬁe equation follows from‘the semi-acoustic theory presented
in th: rext chapter, provided the pressure pulse has reached its nymptoti'&' linear
shape,

From these formulae we calculated the weight of the TNT charge required to
give the same shock pressure at the ~same distance as the nuclear explosion,

Dividing this charge by the weight of 13,C00 tons assumed for the IBM-run, and
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rultiplying by a factor 2, %o take care of tﬁe fact that the INT data apply to an
vexplosion on the grouhd so that practically all energy is in a half sphere, we obtain
the efficiency of the nuzlear bomb compared to an equivalent charge of TNT;

The efficiency defined in this way depends on the shock pressure chosen for
comparisen, and it 48 not surprising that it should ﬁary with the shoek pressure;
aowever, it is gsirprising that the efficiency should increase with decreasiﬁg shock
pressure as ghown in Figure 21 over the range in which experimental data for TNT
exist, However, the individual experimental points scatter appreciably, especially
for aigh shock nressures and,therefore, this variation of efficiency with shock
pres3ure is not necessarily correct, The most reliable data are those at the lower
end of the experimental range, which would indicate an efficiency cf about 0,8,

The curve ha3 heen extended on either gide to higher and lower shock pressures,
The extengion to higher shock -ressures by means of formula (9) is gquite arbitrary
and has been performed only since experimental data for the Trinity test have
usually been compared with this forsmls, The extension to lower pressures depends
on the assumption “hat thé asymptotic fn;nula is valid in this range, which is not
necessarily correct, Again,the main reason for performing the extension is
the fac: that experimental data have been analyzed oy means of this curve,

A similar comparison has been made by using the experimental curve of

A.H.Taub,(l} for half-pound TNT charges in free air, These differ quite

(1) o
Report NDRC-A-2076

appreciably from the curve of Hirschfelder, Littler and Sheard, as may be seen from
Graph 21, This discrepancy shows the difficulty of assigning any definite wvalue
to the efficiency of the nuclear “omb for the purpose of producing blast and makes

it dqsirable to have a comparable IBM-run for TNT,
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Figure 21
Efficiency pf nuclear bomb as compared to an equivalent
charge of T.N.T.
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It sheuld be noted that two factors, which might be important, have been
disregarded in the IBM~-calculations. One of these is the radiation transport
of energy from the ball of fire into the NOp layer, discussed in Chapter 4.
This has the effect of equaliiing the temperatures in the interior of the shock
sphere and it will make the nuclear explosion more similar to a TNT explosion.
Consequently, the efficiency of the nuclear bomb ,.,i’ improved. The other effect
is the radiation which escapes to large distances. The arguments px;santod in
Chapter 4 show that this raediation océurs at a time and place where it cannot
affect the shock preasurelin the region of practical interest, i;t. down to

about one psi. However, it could reduce the efficiency at very low shock prespurss,

The IBM-run was made assuming 2 nbrml’ density of a,ir%, = 1.263 and &
norgal pressure P, = 1 bar (106 cu'n/cmz). The sourd vt;locity of normal air is
then c, = 347 centimeters per second. The total energy was Q = 13,000 tons,

For the change to a different energy release we have exact so;ling laws,
we kesp all pressures and velocities fixed, but change all radii and times in
the ratio of  the cube root ot the energy releass.

For the change to different normal densities or pressures no’ exact scaling
laws exist., How«ever}‘ within the accuracy of the primary data which enter the
IBM-run, we can use the following scaling laws, which relate the deshed quantities

for arbitrary normal conditions to the iBH-qulntitioas

~BL_=_p B' = AR

Pé Po

\ A ,...94. At

n' =z _u cd

¢y o : -

Q. BX g

L =2 L Po ,
a2 = |

[ (o] (12)
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i,e, we scale all pressures, velocities and den;ities in the ratio of the:lr
ncermal values, Thé linear dimensions are sr:aied by an arbitrary factor A s the
times by the same factor A and the inverse ratio of the ndmal sound velocities,
and,finally,the energy release is scaled by XS and the ratio of the normal
pressures, The scaling laws for pressure,velocity and density are,of course,not
independent of each cther, sinc{.e'c; //f; caé‘}: {Pg'// Po \

These scaling laws are baéed on the as[':’,u;nption £Mt the equation of state
of air can be written in the form

—g—; = funation of (J_....—? )and FF?)

which is true for a ¥-law, but only approximately correct for the true
equation of state of air ,(E is the intervai energy per unit mass),

For the Tx'i‘nity test the scaling changes are appreciable, because of the

low value ¢f the normal pressure (See Chapter 19),
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CHAPTER 8

ASYMPTOTIC THEORY FOR SMALL BLAST PRESSURE

H. A. Bethe K. Fuchs

€.1 INTRODUCTION

It is very desirable to have a theory of shock waves which is valid
for small over-pressure. One purpose of such a theory is to provide a
natural transition to the uell—knauh acoustic theory, and to set in evidence
the limitations of the latter. Another purpose is to give practical results
for the pressure up to arbitrarily large distances.énd to make it possible
to stop the numerical calculation with IBM machines (see Chapter 7) at same
finite low pressure, This humerical calculation would become increasingly
inaccurate and cumbersome with increasing radius of the shock wéve; the use
of asymptotic formulae therefore improves both the accurzcy and the ease of
the calculation.,

The theory presented in this chapter represénts the first terms of an
expansionmin'poqera of the ratiévl/f where Y is-the radius of the shock wave |
and L its length, i.e., the distinc;mfrcm the first shock to a point at which
the pressure has decreased to a imall fraction of the peak pressure. Ve shal

in general retain the first and second power of L/Y and neglect the third,

Cne stfong reason for stopping at just this point is that the entropy in the
shock is gggggsgggggimgg_g§, where p is the over-pressure at the shock front
which in turn is proportional to 1/Y. Therefore,if we neglect terms of order
(L/Y)3 we can consider the entire process as adiabatic which involves a great
simplification, At one point in our development, however,(Section 7) we shall

calculate the actual energy transformed into heat at the shock front and at

YiIg -1
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this point we shall,of" course, carry terms of order (1/1)3.

Ordinary acoustic theory does not represent the first term in an expansion
of the type considered here. We shall find that the length of a spherical
shock wave increases gradually as the shock wave moves away from its center,
whereas an acoustic -av; retains its wave-length all the time. Similarly, the
decay of the ';x'essﬁre at the shock front is somewhat faster than that of the
pressure in &n acoustic wave. However, acoustic theory is very useful to

provide some gulding ideas for our theory; and we shall therefore start by a
recapitulation of the acoustic theary of an outgoing spherical wave,

8.2 ACOUSTIC THECRY

In the ardinary hydrodynamic equations (see below » Equation (12))all terms
should be neglected which are of second or higher order in pressure p or

material velocity u. Then the hydrodynamic equations become

-%'-:- z-c %‘r:

, (1)
where O~ is Riemann's quantity, (cf. Equation (m))which for amall pressures
is given by

T

(2)
Combining the two equationa (1), we get the wave equation
2 C 2
e 2 2L 2 . AS
DO"-—,arz'l-r-%gE'cat v
B ) E:
(3)

which has the solution
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(&)
where(l>

Tz t-rfe (5)

(1) _
We consider only cutgoing spherical waves; for ingoing waves, ¢ would
be a function of t + r/se

and f* is an arbitrary function of T which is determined by the source
which produces the sound. Instead of f*', we may also assume £(1 ) as givens
f' = df/d. Inserting (4) into the first eguation (1) and integrating, we

get

2Ty Lo 2T

oo Lo

u o
ol
o bl

(6)

We gee therefore that and the pressure p are propagated with saum&
velocity outwards, and at the same time decay as 1/r. On the other hand,the
material velocity u has one term Which beha#es in the same way and is actually
equal te ¢ , and a second term which deéreases as %ffg. This second term is

proportional to

() = J'/f' (1) e
(7
i.2. it depends on the pressure which has existed in the wave at esarlier times.
For this reason the second term Equation (6) is known as the after-flow term.
It is interesting that this term contains a factor c¢; therefors,it will become
.very large in the limit of incompressible‘thecry, which corresponds 4o infinite

gsound welocity. In this linit the material velocity becomes
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. (8)
At any éiven time, u is inversely proportional to rz, meaning that ﬁhe flow
through any spherical surface is the same, as would be expected in incompressible
theory.

For finite sound velocity the second term in Equation (6) may or may not
be important. If the sound signal is of finite duration T = L/c,tﬁe ratio of
the second to the first term in (6) is of the order L/r. With increasing
distance r from the -source therefore the second term becomes unimportant in
comparison with the first,

We shall find that a more accurate theory of pressure waves can be con-

structed in close analogy to the acoustic thecfy here outlined,

€,3 GENERAL THEORY

The equations of motion in Eulerian coordinates sre

bu +u ER:L - ”d-}; b?
*bt 2’5‘ &r

(9)

The first of these is the equation of motion, the second is the continuity
equation. The equation of energy conservation is replaced in our approximation
by the condition that the motion is adiabatic (see Section ‘1),

It is convenieni to introduce,instead of the pressure, the gquantity

o (aP . (.
o = Ve p ‘5 F-

(10}
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in which ¢ 1is the scund velocity which itself depends on the density.
In (10) we lsve used the definition

el = dp/dﬁ (1)

Inserting (10) into (9) we obtsin

L e oo

In the ecoustic limit the terms conteining u as fector can be neglected

and {12} reduces to Equation (1).

We know from the amcoustic theocry that ¢= and u behave epproximstely

as 1/r at large distances. We therefcre introduce the abbreviaticns

%

@ ‘ :a s ro

.(13)
U = ru
- With this noteticn Bousticns (12) become
‘ bU 2 —é—-[,- - G —Z—- - U2 -
3t %T' +ET T 2z =0
‘q
P ovU !2 U u % 0 (14)
———— P ) § 40 mem = =
It -+ 053‘ 2r r 1.2

fe knew further from sccusktic theory that u becomes ssymptoticslly equal

to o for large disternces. We therefore further set

U =5 +D s
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and we expect tnat D will become mall compared with g | for large r.

Equations (14) now becone

ﬁf'”ﬁ- (c»-t*g’) i—g +c(%—§+-¥-—) - 2;_%:- = 0

v

. v
R ST T

In the first approximation we may neglect the hat three terms in the
first equation (16). We should expect that d/dr of any quantity is of the
order of that quantity divided by L. Therefore the term U/r, which is

__approximately equal to ‘x/r, is small compared dz /dr, the ratio of the
two terms being of the order L/r The term D/ r is small because D

1s @pected to.be amll compared to g a8 will be proved below, The last
‘term is in turn mll eonpu,rod to t.he aecond last tcrn.
In the first approximation, therefore, the first squation (16) roduen to
%% + (c+u) %% = ol 5 ) - an
m; oquatian meuns that I propegates t:rith the velocity c t Ve This is
the analogus of acoustic theory in uhicll, z propagatu with v-locity ey
'rho replacesent of the ordinary sound vdocit.y ¢, by the effective sound .
nlocity c % u is physically obvious and is malqsou: to the well~knm
Riexan method for treating plano problena

The solution of (17) is |

2 ‘Z(T)“ , : (18)

d \ | -l ) .
Tet - f P ‘ (19)

with

&
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The integretion in the expressiocn (19) is to be extended cver s path
aleng which & is constante The integral therefore depends on %1 and
the equstion does not give an explicit solution of the Equation (17)¢ The
lower 1imit in the integral may be e function of Z. If we chonse the
anme lowsr limit r_ for all 2, then 7T js the time when the value of
& to which it belongs passes the point r,+ For the present we shall
not ;pecify the lower limit. The function I (T) must be determined
from the shape of the shock wave at some 1Initiel time~ This will be dis-

cussed in Secticn 2.10.

B¢4 SECOND APPROXIMATION

We shell now try to determine the functlon D from the second Bqua-
N
tion (16) and alsc to get a better epproximaticn for ZI.
In the second Equaticn (16) we can certainly neglect the last term.
The first two terms can be transformed by ihtroducing instead of t the

variasble T defined in (19). We have then
= (2p_
3k - (3%

%m%...)t = %p&ww)r "(”% % }r o ;. u (20)

and the second Equation (16) becomes

2 e aD - 2 z A a..b..-g..
e GG - )

(21)1

»
Neglecting all terms of smaller order of ;hgnitude,tﬁi right hend side re-
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duces to 2 ¢ 4/r snd the factor on the left to 2. Then.(21) car be inte-

grated and glves

D : - SE‘.d‘t

(22}

This result shows that D 1is actually of the order ¥ L/r, and ls there-
fore small compered to 2 according to our assumptionss This justifies the
first approximaticn gilven in the last section, aé well as the trestment given
in this secticnes It is, however, of interest to write down the right hand

side of Equaticn (2i) tc the next approximstion. For this purpcse we note

that sccording to (22)
(EE) = - ol
r
a7 v | (23)
Therefore (21) becomas

‘g"%')r: (ot )‘;' e (24

in which on]y{terms of order uD/r are neglected, but terms of order cD/r

i

and u L/r have beenbtgken into mceounte.

The form of Eeuption (22) ehows that D ﬁas the character of an after-
flow term and therefore corresponds in all respects to the sfter~{lew term
in Section 2.

The integrel in (22) must te extended from the shock front to the point
at which D 18 tc be caloulatede To prove this, it must be shown thet D
behind the shock front is of smaller order then (22). This can easily be
done by using the Hugoniot relations and the defirition of @™ . We have

behird the shook front

u2 - (p-po) (VO - V) (25)
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3 I 1
where the subscrirt o refers to the undisturbed materisl, and V 4s the

specific volumee Further, we have generally
(28)

The velue of D behind the shock front is by definiticen
D = r(u-o) , (27}

To evaluate (25) end (26) it is convenient to introduce the quantity

Vo = ¥
X = (o] A )
—~ (28
and to express the pressure in terms of this quantity:
2 2 3 3
d v d 2 _V d 3
a - 0 ¥ a0 CLP x4 aees
PaP v"ﬁx"'T‘ ﬁ% T 4 v3
(29)
Using the definiticn of the sound velcoity we have
__3_2 . od (30)
v - ———
o Voz ’
and we write
{ dy
[ oal? . 24
d o Wo oo
£ [+
a3 6@30 2 C bid ( @f\ (31
a— %l: _% - -/{("J., \ r\Ag’ H
a v, v, 4 Voo

wrere ol and /3 are dimensicnleas coefficientse If the adiabatic law is

of the usual form,

Pe P, (V/ V) 7 (32)

I

the values of X and ﬁ are
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p(z(k‘i-l)/l.

g3 =Cx+1)(ys2)
/ — (33)
[
With these abbrevisticns Equation (29) becomes
P“Po =2 ( x4+l x°+ Se...
3] vcv ( ‘ ﬁ x- ) (34)

Inserting (34) and (28) into the Hugoniot relatlon (25) we obtain

Wz oo x (1+hoixs (40-Fo) <2y (ss)

Further we find,

A ,
\f' g—%— < :3_. (14 x 4+ (‘:22@ '°&r)x<2+'--)

° | (36)

or for the sound velocity

c e o [I-ch-l) ,x‘+(3ﬂ/2-u2/2 -d)xz+.--]-

7)
[ [ (3
Inserting (36) into the expreesion (26) we find
0=z ¢ X[1+d/2 x <4+ -“26 2.'-...]
and subtracting we get
(397

u - g” =64 &2 x3/24.v
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This relation holds ganeruily behind the shook front. It is interesting
that it depends on the quéntity > , i.e+ on dzp/dvz which is also the
quantity determining the entropy cheange at the shock front (see beléw,
Section B.5). For our present purpose the important point is that u-0~
‘is proportional to xs and therefore t.o 0‘*3. and therefore falls off as
*1/Y® where Y 1s the shock rsdiuss The quantity D just behind the
shock front will therefqre fall of as 1/Y% which makes it of smaller
order of magnitude than the expression (22).

We note in passing that, sccording to (35) end (37), the velocity

of wave propagaticn is in first epproximation

' = ¢ (14l
e shall now insert our expressicn for D back into the first Fque=-

tion (16). We have to celculate the quantity
Bn)
Adr/ly (41)

Usirg (20), (23) and (24) and the definition of “t7 , this becomes

Do 2 s U
-I- 2 -z (42)
As wes exrlpined above, only quantities of the order (u/c) (D/r) are neglected
in this expressione. | |
Inserting (42) into the first Equetion (16) we see that the terms U/r
cancels Therefore the first Equation (16) vecomes, neglecting the very

small term DZ/ra 3

L
S , 2\ L&
(C+u)<.§%)t: %—%+(C+u) (%’E iy

(43)
§
Neglecting u in ¢ + u, this can be integrated to give
{ | !
T R 44)
S 57 Cr (
A )

°
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In other words, along a line of constant T, not I itself is a constant

| but the somewhet more complicated quantity
T2 fem Z, Fons (440)
i 1itsgelf therefore increases ss the wave propagates outwards.

8.5 THE “OTION OF THE SHOCK FRONT

Jet us sssume that the shook front moves from a redius Y to a radius
Y + dYe The shock velocity can easily be shown to be in first approximetion
midway between the effective sound velocities ahead and behind the shock.

The former sound velocity 15"00, the latter ¢ ¢« u so that the shook velcc~

ity is . 5
, :
Y = 43 (c+c+u)
(45)
. ' snd the time needed for the shack to travel the distance dY is
de. 24Y .
GREY-R XY _ (46)

The shock veloeity is smaller than th; velocity of sound waves behind
the shook, ¢ + ue Therefore these sound waves will catch up with the shook
. wave, and if' the shock is followed by a rarefaction as it is in the case of

e blast wave, then the rarefaction will gradually out down the strength of
the shocks In our notation, the velus of T at the shock will gradually
changes if it has the value T when the shock is at Y 1t will have the
value T + d T when the shock hes moved to Y + dY. '

In order to velculate the wvariation of T along the shock front, we

have to complete the definition of © which was left somewhat arbitrary.

It is convenient to define the arbitrary constent of integrstion in (19)

a8 follows
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n
, n U0
T=¢%~ ‘g;‘a_ g

where Y 1is the shoCk radius st the time when the signal % reaches the
shock fronts Y  therefore is a function of & eand this is permissitle

since the constent of integretion was nllomd to depend on <. If we use
the definition above then®T + Y/c_ is the time when the signal i reaches
the shocky or Tt 1is the difference in the actual time and the time which
would be required for a signal traveling from the origin with normel sound
velooity c,- |

The time difference dt between the arrival of the signals T and

T +dt at the shook front is therefore
dt = 4T + éc;Y (47)

Comparison with (46) ylelds

d—t 2 ) - Q= AA S -C-q
e m - s Sj-s—m— (48)
&Y ,+E 1‘ (L I E, G(C v ¥ _z»sc’l

This equation describes the catching up of the rarefaction wave with the
shoek front.

From (40) and (38) follows

Y :c.-*“(a’

140)
Hence (48) becomes
4t _ -La . _ oz
dY  ack . o2ac}Y (500
P

where we have also used the definition of 2 e« o ¥Ys
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8.6 RNESULTS FOR VERY LARGE DISTANCES

Up t11l now we have not made any special assumptions about the function.

2(1:), i.s. sbout the shape of the shock waves We can get further results

- if we assume thet initially (at smnil distances from the origin) the ashock

wave was of short duration, and that most of the duration et shock radius

Y s due to the oxcess of the ahock wvelecity ower the unparturbed sound

velocity oo+ This aéaumption is quite well justified for blast waves at

sufficiently large distance. If t, is the time at which a given value
of I exists et a given small rsdius r, then we have for the arrival time

XY
of this value of Z at the distgnce r (cf. (40)) {»@

r P
tat,+ [ dM Ty A
cru ' C+ot 2 /A,
%, %
_ . A (51)
= _— 29. +t - —Z—P( ‘ log h A f,%*;‘?t
% S C. . e

If we neglect small difference in the values of t, and r, for dif-
ferent values of Z it follows that for fixed r, I 1is a linear function
of ¢t gnd therefore also the pressure assumes a linear shape.

We‘ apply the eﬁuation (51) in particular at the shook front r = Y,
= Zs- Then t is the time o'f errival of the signal Z; at the shook
redius Y. However,this time was also equal toT, +Y/-c.(. where T, is the
value {t‘ 1t corrdwponding to 24+ Negleoting again r, and t, as small

.,
guantities, we find therefore

| -
v - 2% 10 X )
Cel ’LC _ (52

- In the approximation in which r, and t, are neglected [T, | 1s by
definition the difference in the arrival time of the shock and of the signal

-
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I = 0, 8ince the lptter travels with sound velooity o, ;4 i-o-,l?;! is

identical with the duration of the positive pressure pulse. This is easily

verified from the Equation (51). .
In ordar to obtaln Tk as function of 25 sonly, we have to express

the shock radius Y in terms of Zab- For this purpose we substitute (52)
into (50}« Then we get

dis - 21 ., -
dY 2Y log (Y/n) ' (63)
: ] . ,
which can lmmediately be integrated to give
A
D . SN
s J1og {Y/n) “ C

where A is a constants 1In other words, the value of Z at the shock front
i{s not constant but decrsases due to the catohing up of the rarefaction.
This decrease is very slow; it goes only as the inverse square root of the

logarithm of the shock radius. ' ;

The derivation given above may pive rise to the 1mpr§ssion thet r, may
be chosen arbitrarlly as long as ié is small coumpared to all values Y for
which the formula'(Si) is appliede. Thju is not soe. In fact, it is easily
shown that we are led to g%htradictions if wo allow r, to vary over any
appreciable range#

' We ghall gase later that aAdetailod analysis will ellow us tn determine

the correct velus of r_ which should be inserted in the equation {54).

°
For the present let it auffiu§ to point out that a pressure pulse of the
asymptotic shape, requires tua parametere to determine its initial conditions,
nemsly the, strength and durption of‘thn pulse. We require, therafore, two
constents in the ilymptotiﬁlluv’and;thus both the constant 4 and the con=

stant rg sre determined by~€hp properties of the pulse.
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Golng baok to Equstion (61), we fisd them that the duration of the
pressure pulse will increase as the square root of log Ye The product
of peak pressure Pg and duration 6 , or the so-called impulse of the
wave will therefore behave exactly as. I/Y, namely. ' |

P’ &= comt-./\( (55) !

We have thus seen that in our approximation a shock wave will spread
out gradually, in contrast to the acoustic theory in which the wave retains
its shape for all timee The spreeding of a shoock wave in 3 dimensions is
very glows It would be‘.cond'idorably faster in two and sfill faster in one
éiun.élcn- On the other hand, for a space of more thn three dimensions
this effect will not oceur. i | |

Conmscted with tho spreading of the wave thare is a decrease of the
front pressure whish is gnitor than l/Y- Again, 1n ‘thres dimensions this
effect is small; in one dimension,elementary aceustio theory would give
constant front pressure whereas the sotusl behavior is as 1/ Y+ The
case of two dimensions is again imtermediate, and for more than three
dimensions,ncoustiec theo:y becomes the correct asymptotic limit.

Another interesting phenomenon which is connn;tod with the variation

of the sound velooity ¢ ¢ u 1is the fact that a sscond shock must be formed

in the negative phase of a shock waves The regions of megative pressure

_ have a particularly small propagation velacity, ¢ + u,which is smaller than

normal souni velocity 6,. Therefore the very end of the shook wave tends
to oateh up with the rc‘gioﬁu of negative pressure and a seocond shock will
result. This will be discussed in more detail in Section 8.9.

Another interesting problem is the motion of the point I a 0, which
marks the end of the positive pressure phase (p) Po ) and the beginning of

the negative phases In our approximation the propagation velosity of this
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point is just the normal sound velocity c, . Actually, however, u is
somewhat greater than o by the ameunt D/re Therefore the point I =0
propagates with a velocity slightly greater than normal sound velocity.
Since the very tail of the shock wave moves with _veioeity ¢,s the end of
the positive phase I « 0 moves with a veloclity alightly greater than the
end of the negative phase. Conseguently the positive phase will tend to
become somewhat shorter and the negatiwe phase somewhat longer than the
elementary theory indicates. This corresponds to obumt;iom.

A very important :;omark abdut the shapes of shook Wans has been made
by Penney. It is most easily deduced from the fact that the total masz of
air behind the shook must be equal to the origimel mass ‘of air within the

radius Y. This means

Y ‘ )
f Pa*dr = £ Y/ | (56)
L - :
There are two regions in which the density is appreciably different from
the normal density f, . One is the central region in which the gases
have been left at high temperaturs by the shock and therefore have low den-
sitys If the shock wave is far out, these regions have returned to atmos-
pheric pressure and therefore to a definite density. If X denctes a
radiuﬁ small compared to Y , but large compared to the region of the hot
gases, we shall have
% .
f a 3 , o . » }
. LPatda = p x /2 -M 3 (67
where M is a constant independent of X and of the time. Subtracting
(57) from (66 ) we get

Y ; B
xj (P-A)r‘dn =M (58)

The shock .'roginn itself may be assumed to be small in extension compared
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to Y. Therefore we can replece,in this region, r by Y. Purthermore the
deviation of the denéity from normel, P -'.ﬁ, » is proportioual 0o G .

Therefore we obtain from (88) ;

Y" a-d":Y zdkr =M

hock hock (69)

From this f'ollows that
f S dn ~ Yy (60)

_However, we know that the value of I at the front is nearly constante.
Therefore the integral in (60) mumt consist of two contributions which nearly
cauc‘enblhoaeh others Tﬁo thock wave must consist of a phase of positive o
(ovor-‘prcesun) and a phase of negative o (under-pressure) such that the
impulses of the two phases cancel each other in first approximatione This
argument is also a proof of the existence of the negative phase; it was first
given by Penney using the energy rather than the amount of materisl. \
In periicular, in the limit in which the pressure depends linearly on
the time, the shaps of the shock wave becomes symmetrical, with equal shocks

at the beginning and at the end as illustrated in Figure 1.

8«7 THE ZNERGY

The energy flux through a given surface consists of two parts, namely
(1) the work done by the material on one side, ;:1 the materisl on the other
side and (2) the energy transperted with the material itselfe Since we
have proved at the end of the last section that the pressure pulse in a
shock wave has o negative phase balancing the positive phase, the final

displacement of any polnt is zero in first approximation

fudr zocy/my .
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Figure 1

' Symmetrical, ‘I‘unal‘ Shock Waves
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This means that the net transport of energy with the material is zero of
higher order than the work term mentioned as (1) above.

V'Thtro'tor‘e'-tho -energy flux in the shock wave through a sphere of radius

Y is in suffioient spproximetion:
a
W= 4T Y f pudt
(62)

If we set u = g- and p = PCE@"  and q—=2/y~, and if we further assums

~that the pressure distribution is as indlcated in Figure 1, the energy flux

becomes

‘ Y | a2 ¢ 2 :
W= 4T pe IZ dt qrrfcif fx x (6s)
-4

4

where 0 1 t!‘n duration of the positive phase which, according to Equation

(52), has the value o
. XY \ |
o F Ve (64)
[ o -
80 that ,; .
\J‘ 32:"0 Zf 1og’)€ (66)

Using the reldition (54) for I - this becomes
- 3
_ M p —A

\/lcg(Y/uQ (686}

°

Equation (66} shows that the totel energy in the shock wave decreases
slowly as the shock wave propagates. This fact was first pointed out by
Penney and means thet it is impossible to define in any general way the

enerzy wasted in the shock wave, but thet thie waste will depend on the

distance to which the shock wave has gone. It is interesting to determine
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the dooay of the energy in the shook wave also in a different way.
This way is based on the fact that energy is irreversibly converted
into heat at the shock front at all times. To determine this wasted energy

or increase in entropy, we use the Hugoniot equation fer the energy
= Jo A a Y VvV -V
E-E, =L CPHRICY, V) (67
where the quantities without subsoript are behind, those with subseript o
in front of the shock wave. The energy can be expanded in a Taylor seriu
in the change of volume and of entropy, as follows

2E E
ee.- vy r k3 (Vv

L]

,,.L .b..g TR +%—E§($»S.)*“ | (68)

If wo remember that e S

(3%h=-*

-13
BS54 e (69)

“Re

and intreduce the ahbpeviattoo‘a_(?!ﬂ), (68) becomes
_e =p N x@-+ 28
. E-E = p N, X Ts7 3

kY
+ A .b

3
‘ 3\{,L\/ X +- +T, (5~ 5)+.- (70)
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Further, ws have
’ P
2p ) &P, a2
P=P°"erx+1 IDVZ'VQ X - (71)
Inserting (70) amd (71) into (87), we £ind
T s):—L ?,;P \/3 3
o K9=3) " T2 va Yo X (72)

This is the energy wasted per gram of material swept over by the shock.

If we now use (31) and (38) we obtain
A 3 ' a2 3 >
:w\/ = - ywpY T ( 5-5)= - 2L «pcTx7Y

:—H .P«o-aYz

3 ¢ (73)
NG
. In our shook wave, at very large distances, there are two shocks of { 2

. ' X
equal strength and thergfore the energy loss (73) occurs twice. Therefore 5

we find for the decrease of energy in the shock wave itself

2
AW w2
dY T 3¢, -:Y‘f _ : (74)

Comparing this with the expression for the enorgy‘ itself, (66), we find

AW . _ W |
Y YRR )

which integrates immediately to

anﬂ. -
\Vlz . (78)
©
This result is exactly the same as deduced above by explicit ewvaluation of

W, Equation (66). We .therefore, have found the decay of the enerzy by two

entirely independent methodse Both methode are only a};plieable if the shape
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of the pressure pulse remains unchanged. >

8.8 THE PROPAGATION OF THE SHOCK AT INTERMEDIATE DISTANCES

The asjmptotic form of the pressure pulse behind the shock is ususlly
reached only at very large distances when the shock pressure has become ex-
tremely smalle There is an intermediste region, in which the shock pressure
is quite small, but thes pressure distribution behind the shoek is not yet
lineaer. We shall now consider this intermediate regione I.e., we make all
the assumpfions which 1ed.to the first approximstion considered in the pre-
ceding section, but we allow, within certain limitations, en arbitrary shape
of the pulse.

Since we are interagted to apply the thsofy to the IBM,calculationsgv
we shall slightly change the procedure used in the preceding sectisnss In=
stead of infréducing a8 initial conditicn the shape of the pulse ot a fixed
point asg fun&tion of.time, ws introduce thé pulse abt a fixed tiﬁ@ te ag
fun@tic;n of i‘:hé‘ md:'u}as y » Hence we write the soiu%;ion of (17} in the

form o ‘ .
2 =2 | o

- +
y,zh.-*f (eruydt

i

o

(78)

Then 2 as function of Y is given by the initial pressure distribution

at time t,e Us?mga(49} one finds .

yﬁm”‘-co (t»i&* f R o dt

\tb

(79)

The remeining integral is a small term and thersfore we may replace dt by

df;jcm o Also cr‘::aj&uanﬂ 5 is constant for the purpose of integration.
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Thus ; : 5
Fonocueety-aZ banjy

(80)

Alternatively we might have replaced r in the integral by ¥+, Cr-t)

and found
) oﬁz ¥al (-t
YR -G Ctoty) - 8 jr» oy o

(81)

Since ZL/C.'> must be small compared to y the two equations differ only by
terms of the order (2/y < )2,

- We introduce the abbreviation

3(2):%-§%y~k | '’ (82)
which is a oconstant. For convenience we define k in such a way that
<{g(0)=0 o (82a)
Then .quat.tozi (80} takes the form
n-.c,(t-t,)+%:[‘3(i )+2 j""’“k} (83)
In particular, if L, is the value of 2 at the shock fronmt R |
Rec, (t-t )+ %: [‘3(2'5) + 25 dn R‘k} | (84)

Differentistion yields

%%[\—%—%]’Co“’%%‘ %[?1‘+'£"R] " (85)

)

s

o The shock velocity is also socual to the average value of ¢ + u in front

and behind the shock, i.e.

] |
48 [arenes v T2 (86)
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Here we have made use of the Equation (49). Comparing the two equations

for d.R/dt and observing that Z/‘-‘,R is a small quantity, one finds

> d2¢dq . | .

Rt R
or

5_5 R0

T4, r% o (ee)

This is an inhomogeneous linear equation in %UR and can therefore be solved

with the result ‘

| L, o4. Z;
a "¢ 23 -y
Rz + 52 S 3F d2 ¢ R
h zs j : ' 25 ° (89)
z
Bk ’
Here Lo 1is the value of Z, at time ¢ « t, , when R « Ro*
Partial integration ylelds
Bk z.[?.e - % °g(2)42]+ % R
I I JD s‘s by ° (90)

3

This form of the equetion s more convenient if g 1is given as function
of L 4in numericsl form, since it avoids numerical differentiation.

Either of the two eguatiopns .giveu the shock radius R as functiom

6f L aRo + Now from (10) o ¥
Ap=f,%T (e1)
and, since -
<=7 :F“ (92)

1t follows that

.%E o 1 %S x-é_:b (93)
M
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Thus we obtain the shock pressure Apg as function of the shook redtus.

Since ' g (2'-) end Z are finite the right hand side of (90 1is finite
except for L, «»0 . Hence 2, tends to zero as R tends to infinity.
o \

1ot us write (89) in the form ..
' .z ) : 2’- e . _d_'_i q) |
7o X 523 aZ it peR (%)@ (= "(i‘"!) &42
E»Rt-z: J 2713 3 Joe °‘(Izl‘f;§:‘ {‘*i %20
. ° e\

(89a)

Te
Qz'zo‘d
-z, 4

Then the last term tends to O 1f I_ tends to sero and we have asymp-

totically
2= [EnLR]R")
- (94)
where ° : 2
A= 2 p2 %% 2 *2 ,&\ Ro
1]
* d
bk - (53), .,
(95)

This is eassentially the equation depived proviq:uly for very large distances.
" However, we have obtained hers the §bmt.nt A ” in terms of the initial con-
ditions and furthermore we have nw‘a definite radius R* 1in terms of which
the radius R should be measured. The contradictiens which arose previously
are therefore avoided.'

It will be observed that the ssymptotic law (94) is obtained only if
Z i sufficiently small; if we plot 2 against Y ¢ it will have some shape '

of the form shown in Figure 2, avproximating roughly the initial pressure
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R
-.;F:igure 2 ‘
Initisl Préﬁ:qun Pulse
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pulse. As time goes on variocus 2 vwalues catch up with the shock front
and the range of value; which initdially extended to Zo contracts and ex-
tends only to iy « The asymptotic law holds only if 2, has becoms small
compared toc I, or more precisely if I, is so small that 2 may be con-
sidered a linear function of y between 2 =0 and 2 & L4, » The
smaller & <the longer it takes for this i to éatoh up with the shock
front, and therefore it may take an appreciable time‘ before the aa‘ymptotic
law is esteblished, unless the initial pulse is already close to a linear

functhiono

The pressure distribution behind the shock in space is most easily

- obtained from the Equation (81)

F g y+o, (t-ty) + tz An ¥too(t-t,) (96)
o] y .

Asymptotically I <tends to sero. (We have proved this only for the positive
phase, but previcus considerstions have shown that asymptotically the pos-
itive and negative phase become symmetric. Ve shall consider the negative
phase ‘in some detail below). At the same time Y tends to a fixed value
Yo =+ Hence I and, therefore,also the pressure, becomes linear in r.
The length of the positive phase is obtained from (96) by subtracting r

for L e O from R for 2 =lg ;5 1ewe

L e yeyesSyod In Yaroo (%) (97)

-+

Asymptoticelly we have Yg —> Yo and

Yot 0e (tety) = R-L ¥R (98)

i

Inserting this expression into the %of‘ (97) and using (94) one finds

A :
L — ‘:‘o An (R/ye) (99)
An (RE*)
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If we wish to obtain the pressure as function of time at a fixed point, it

is more convenient to use the Equation (80) instead of (81)

Cs (tuta) 2P -y - c:'oz % r/y (80)

" Following the sams arguments a¢ sabove one finds thet the pulse 1s asymptot-

ically linear. The duration of the positive pulse if given by

1 %2y dn v/
T » Anr—— - -——-—L- . R y .
+ S [y' Yot 5 .] (100}
- or asymptotically
B (R/Yo) 1
e L,
L= So? m . I P (101

as it should be. Altomtiwly we may use Equation (83) to determine the

length of the pulse; with (82a) we find
qk .
L, = - [g (Zs)fi-‘,ln R]

(99s)
and for Vthe duration
T+ = (Z Yo 2, In R] (100a)

The shape of the pulse is obtained from (83). 1If At is the time
interval between the nrrival of the shock and the arrival of the signal

Z. at the point r, one finda

av s Zle@) - @4 @2 and] (o2

o

8.9 THE NEGATIVE PHASFe DEVELOP¥ENT OF THE BACK SHOCKe

We assume that the initiel conditions are as indicated in Figure 2,

se that the negative phase gredually returns to normal pressure. The value

4
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Z « O travels with normal sound velocity, whereas all other I values in
the negative phase trevel more slowly. 1In fact, throughout the whole region
in which d.i/d)l; is negative, the i- values have a tendency of catshing
up with each otéor'o At some stage a Z- value in this region will overtake
another and then a shock starts.

As long as r incresses with increamsing Y the 2 - values are in the
correct initial order. If r as function of Y has an extremum, some -
values have already overtaken others. A shock starts at the boundary between
the two cases, when r as function of Y has point where both the first
and second derivatives vanishe |

From (83) follows for fixed t

ar [ .ot 2 1ot lag a2 J | )
g[g g ey hes

The condition that dr/dy « C gives

dg , 42 Par: O (104)

dy Iy

Now from (82)

d %o [1-“2]' dzﬂ‘l’!}"
3‘5’7‘ So ¥l dy (108)

and (since .(2/%3«* is small), dg/dy and dz/dy scamot vanish simultan~

eously. Henoce they must both be finite in (104) and we may write

%&i*‘e“r: o (108)

If we differentiate (103} once more and put dr/dy s d%r/fay® = O s we find
r

. ’ (xo0m




wry ¥
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If we neglect smgll terms of the order Z/Co)/ and L/f + this con-

dition can easily be reduced to

2 ,
d Z/d B % {107a)

end similarly (106) yields with (105)
21\ "-/'1 ;‘.9. df | (106a)

The Eouation (107) determines the value 2 « I, , at which the baek shoock
starts. Substitution into (106) gives the radius r = ry and finally (83)
gives the time ¢t = tj .

The back shock starte somewhere inside the negative phase and for some
time st lesst the pressure in the rear and in fromt of the baok shook differs
from normal. If }:'F , 2» are the corresponding I walues, m‘h;vo
for the shock velosity 1n‘nnalogy to (86)

' A
.._d;I = C°[| + of i{* 2;\ } )
d+ - 2"“"‘"‘%“‘,“ (108

where Y is the position of the back shocke In addition we have two equa-
tions similar to (84)

N [Y ¢ (- t)] %(zg)rzg I“Yn; g(Z)+2 £nY+k

oL (109)

-
Following the procedure used for the first shock, we find equations similar

to (88)

2¢-20 dY L dg BnYs 0
Y d Zf d¢

5-% 4v 49 BwYeo -
LY ds,  &Z, |
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Combining the two enuations we find

d'zﬂ. + LYIY«: dj [dif

P

dXf  ImYedgjdz © (111

Elimineting Y by means of (109) one finds

di,‘ N g(fy)-—g(zf)q(zi_z‘)da/d Z; - o |
43, gE)-qEDH(Z -F)dg/dZ, (112)

This equation requires in general numerical integration. |

Since both I, and i, are negative the shock trevels wit:h. »n veloc-
ity below the velocity of sound. Hence the vplue L =0 will eventuslly
catch up with the back shocky and then the back shock leaves the material
behind at nérmal pressure. Then the equations f‘or the propsgation of the

back shock take a form similar to those for the first shodk

d )
o gAY Ree 1
with the solution
/23‘&"‘& zl
2. .o
gnY-<. | 23 dz+22 ln
InY-3y ) 4% 2; Ya (118)

Here I,, ngyare the values of 2‘-! and Y at the time when I, reaches O .
Just ae for the first shock it follows that Lp approaches gero for

large Y and one hes asymptotically

5, . Fom—— | |
- £ \/:BNT/V‘ . i o (118)
: i‘; L2 :
B"f,z; .{ z;‘% d}.“pzl,gn\/z (116)
0- | -
ot (4 i
$-0 _
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We have seen previously that asymptoticelly the strength of the back shoek
must be the same as that of the first shocke Hence A should be equsl to

Bo Io‘.

2, d 2
2 f s 9L 45 .S R T gaYz0
2

P

(118)

Using the expression (82) for g we find by means of partisl integration

by .
2 f b ?—i d2 = BYAN f%{"‘z {2'%}“.‘! (119)

-
g

The lest term in the integral is small and we riqniro therefore

2, 2
TS R AT
zz

(120)

Here yz is the value of \/ corresponding to Iy and we have made use of
the fact that y = R, for 1 = I;e If we chocse our initisl conditions
at the time when 2 Jjust vanishes behind the back shock, they ¥, = Y2
and the integral cf 2 taken over the whole pulse vanishes. The same is
true if we choose the initisl conditions at sny later time.

For later application we shall finally write down the equations which

result if the initial pulse has linear shape. Ioe-,~ we assum®

4
23, PP, ferry Roaliey <R (120

where» R, is the shock radius and L, the length of thq positive pulse

at time t = t,- Z, 4s the walue of Z et the shock front, which is related
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to the shock preesure by the Bquation (93)
- R,¢o 4
;go o *Ps |
% (122)
Differentisting the function g(I) defined by (82) one finds with the help
of (121)

;%%* (“W/ Ay

(123)
Weglecting the second term in the bracket, which is sme}l and cbserving that
y is for prscticsl purposes constent and acual to R,y weo find that _iu‘/d: 2
is constent. P .
d9 & Ly . LR . - BV
S o X A c BRI
dZ . ‘ : {124)
Here we have used the definitiom (956) for R'.
For the constant Az defined by (96) we find
- (R R" )

(125)

The pulse is characterized by the two constents R* and A2 ) }2 is esséntinlly
the produot of the duration 8= L./Ccnnd the shock prossuu 6?5. multipliod

by the radius Re. More precisely

Ao __9,9“35"%

<Y 1 (126a)
The redius R * is s.’milarly givon by
R'=R e éx %8 P(%EE%
(124a)
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Here the subsoripts o have been dropped, since these guantities are con~

stents and apply thorefore st any time.

8.10 TWC PRESSURE PULSES CATCHING UP WITH EACH OTHER

If the explosion of the 'gadgat takes place at soms consideresble height
and the presaure pulse is messured by airborne instruments, the problem .-
rises whether the reflected shock from the ground catches up with the first
shook, and what hapvens if it does.

| We sesume for simplicity thgt both pressure pulses have resched the
asymptotic forme As long ee the front of the eecond pulse hse not reached
the reer of the first pulse the two pulses behave independently and the cel-
bulntiom'nf the preeeding sections spply. The mid-point of either pulse
travels with sound}{ velooity o, and they keep, therefore, st = cbnstant
distent (apart from é:omtrical factors arising from the fsot that the re-
flsoted shock has a oemr different from that of the first shoek; these
afe mglooted in the following considersticns). However, the length of each
pulse increnses indefinitely snd therefore the reflected shock will some
tims catch up with the rear of the first pulse. We thonfhnve three zhooks
a8 shown in Figure 3. |

‘“T'ho ecvetion for the first shock, of course, remsins unaltereds i.e.
. - ® o :

R R

(128}

where the suffix 1 refers to the first shock, and the suffix o to some
specifiod tims, e.g. to the time when the second shock just cetohes up with
“the first pulse. R* is given by (124)- Obu‘rving that the length of the

positive pulse et time t, 15 equal to 1/2 (R, = Yo)s we find

LR = dp R, -5 &2 “"{: | (127
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Figure 3 -

Three Shocks where the reflescted shook will
sometine catoh up with the rear of. the first pulse.
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Similerly we have for the back shoock of tho gecond pulse

z--zfmg

A2/
(128)
o »* . Y Z,
A&"Z ,&Zo—"i- vy 'f’m
. 30
(129)

For the central shqok we have to uge the equaticns devised for the case
when beth 'the air in front and in rear of the shook deviate from normel.
These occurred previcusly in the traatmﬁﬁt of tﬁe baok shook and are given
by (110)
ok dY L 49 Yo
» dZ, 42,

2Y (130}

T4-2; 4Y , 4 V-
___}a?.m .3334- ﬁawew\( o

in the first of these eousticne ¢g/& Zl . is to be teken from the g=-funotion
of the first pulse; il.e. it is enual to —/4; R* (see Equation (124)/.

' *
Similarly, in the second enustion dq /d- Za-bnZ, Thus

S,-2y &Y LY SR 20 :

'.'zY dZ,

(131)
23‘21 4d.Y ..,,B'\,Y &Z = 0
Y d—ig
These equations may be combined to gh;e
2y d(2Z;- 'Z'J.) ! } g 2 O
Z4-22 Y .];y R I¥1 2 (132)
Integration yields.
_ z (Z -z ) IR ﬁn C_Y
Eg 22‘. 3 20 J (Y IR*){NCY ) )
. (133

APPROVED FCOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE

VIIlez8

If we substitute this expressicn into ome of the Foustiens (13} and
!

integrete, we obtain 22 and 215 aoparatclv.

\/E;C\r/z )- f,&.(y/n )

The result is

EIE V{&(Y,’P*)
(134)
= A + B 1\}
/
o
where
he(3, - 500 0T )ACY,/R“ )
A(p,‘/z.’\ | %\
oo Bl AR o Ty [OCTET s
JinCY 1RYY + Ja (Y, /24 ¥
it A (/%) > > | ﬂn, (RYz2*), the ;quntiona can be simplified
3, S TRRL/E e
Za= oz (22 '“JIM /%) *
] A )Am z* (138/
23:%:_(2% Zlo Jtz"& IR [Z*) +B

EnCv /2%

- The shock strength of the centrel shock is related to 43 - 4g+  According

- to (133} it drops much faster than either ths rear shock or the front shocke
However, the pressure level at which this shock occurs tends, according to

(136, to a finite I valus. This implies that the central shock must either

catch the first shock (if B) 0) or the rear shock must catch the central
shock {if B<0/).

‘1et us consider first the exceptiomal case B = O« Since 220‘-5?*' Zm,
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B 0 implias thet

5,‘, Vim cv/a*) - Z, fﬁn(Y/ZJ

{ 13 7)

Noglooting the small difference between Y, and Ro» these quentities are
identicel with the quantity A defined by (125), which‘in turn is related
to the "impulse" of the pulse e APS muitipliea with the gshock radius (zee
Fquation (126a//e We conclude that B = 0, if the impulse of the two pulses
is the seme at the same radius. It will be noticed that R‘ and Zl.l mui |
nevertheless differs Thus,qnz'pulee may have long duraticn and low shook
pressure; the other short duration and éomparutively large shock pressure.
If B « 0, then both 2 and I3 tend to O more rapidly than either
L, or u4- Thus the positive phase of the second pulse and the nagstive phase
of the first pulse are aventuelly elimin&ted‘ﬁnd there remains the positive
phase of the first pulse, which combines with the negative phase of the
sescond pulse. All tﬁhis, of course, takfs some time, until ,zw(Y/R' ) >y
A (Yo,/R }o o 1f R* and 2% differ from esch other the pressure grad-
lents in the positive and negative phase will also differ, only the product
of shook pressure and duration will be the same. If the two pulses were
completely identicml, the remeining pulse would be indistinguisheble from
either, so that the reflected shock has simpl& d}sapneared. l
If B is positive, we require thﬁt th; impulse in the second pulse
is greater than the impulse in the first and in this case the central shoek
catches up with the first shocks Fvantually the first pulse has disappeared
and only the second pulse remains. Similarly, if B 1is negative, the sec~-
ond pulse will eventually diaoppenr and only the first pulse remsin .
Asymptoticelly the energy in the blnst wave is therefore not equel to

the sum of the energy in the two pulses hut';qual to the energy in either

K
b
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the firet or the second pulse, whichever is the grester. The remainder of
the energy has been dissipated at the central shocks This inoreaséd snergy

dissipation is dus to the fact that the sheck front of the gecond pulse

[

must go through the negative phase of the first pulse. E.g. the energy dis-

sipetion just before the seoond pulse catches up with the first is propor~

tionml to “4(Ap.)3. assuming for simplicity equel shoock strengths in both

pulsese. The faoctor 4 arises from the 4 shocks. Just after the second

¢

rulse ceught up with the first, there sre two shocks of strength 4pg and

_ons of strength 24p, and the energy dissipetion is proportional to

3 3 s
2(bpg) + (aaps) = 1o (Bp,)

and haa,tharatore,ﬁncreaéod by a factor 2.b. -
If B> 0, the redius at which the centrel shock citohes up with the

first shock is given by the condition Zp = &y A;ter aomi_manipulqtinnv.

one finds as consenuence that Iz ¢ 24 = O, 1.8« the fromt shook, which 1! §

-

now L3 hes the same wvalue it would have had if there had been no first

'pulse- Alsc one finds for the radius R the condition

5, A(&/R‘)a,:z)_wi,oﬂw&o/"z*)& ,g,.(z /%

\lg,.(m = Sl (R, [RY) ““"'5 ,2,..,(2/2') 2 In RIR®Y

(138)

8.11 THE CONTINUATION OF THE IBM~=RUN

The methods developed in the preceding sectioni heve been used to con~
tinue the IBM results of Chapter 7. The IBM machines give us the pressure
p 86 funoticn of the radius et a fixed time. From these data we obtain
immed iately the function E(z}) snd we can deduce the function g () de-
fined by (82). This function shouid;éf_course,be independent of the tire.

It is shown in Figure 4. The cireclesz refer to'the lest IBM cycle when the
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shock radius is 314.7 (we use here the "IBM-unit" for the rn'dius which is
19.97 meters). The crosses refer to an enrly oycle, when the shock radius
is only 200«2.

For the numerical evalustion it wes ccnvenient to intrcduce ,instead of

Y. the quentity .

5 = V = RA .
C, -TE:I
(139)
and instead of g
£{9) = - ea?gx)
’ oo (140)
then the positive phase crn be represented in the form
g 2.2 84+ 075 &
(141)
_ A0SF
o » J = q‘ -
Substitution into (89) yields A T
JoR = o Lo Ak 5
Re W08 |, ¥ 224055 ] 1 22, oF
s + 'Y [ - F] Po - 2

F o (142)

where SF is the value of & st the shock front. Here we have used the

. - 1‘6
boundsry eondition that at R = 314.7, Apg = +C251 pg o \?*f;ﬁ‘\‘ 2 &e
; e
Eow
A8 S becomes emall, we have approximstely '.’v* .
F v
4 =
a) .
AP‘ x pe g 3 % R Z:Y 3‘&'“—‘- 13.03“/ .
P = (RjR*) (143)
° (R in IBM units)
, - |
Introducing the meter ss unit, one finds
(144)
(R in meter)
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The date from the earlier cycle are better represented bty the formula

»

£ 3 1e€ s+ 0.12 8

(141a)
C(b?:
which leads to &‘. -
InrR o 19%:6 Z’f[le-r 0867 |
+°( * ' .f“! : (1424
end asymptotiocally,
%[’2 - ‘ﬁ%ﬁ?ﬁ‘) (R in meter)
(-] e - . N

(144e)

which differs. by about & psr cent from tﬁc pfeviaus formulae This is the
error to be expected, since st the smaller redius the over-rreassure is 4.4
per cent. The dats from the larger radius should be more reliable nnd heve
been used for all calculations;

For the mga?ﬁ‘ivo phase, we pet a good approximestion by the formula

B . (114 04328 s)gq 3: ‘i'\IS-I- s}«t .28 =

, (s<0)
The constents in this representation have been chosen in such s way

(145)

theat we ret not only a good represertetion of the numericel data, but trat

slso the slope of the function g 1is continucus st = a0 nand thet the

-~

integresl of the pressure taken over the pulse vanishes. In ectusl fmct,
the data from the last IBM-cyole sre somewhat erratic im the neirhborhood
of 8 = o« This nust be due to an error in the IBM-run, sinoce the dpta
from the earlier cycle are cuite smeoth. For this resson nc attention
has been paid to this erratic behsvior and the condition thet da/&t-:-

be continupus st s = o has been ugsed instead, in order to get a reascnable
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function g
Te have seen before (see Foustion (107)) thet the back shock will start

i1

st ; value of s for which

dz% /d s§=0

v (146)

If we use the rresentation (146) we find that this condition cannot be setis-
.fied for any negrtive s. Howsever, this is due to the analytic representation;
if we go back to the numeriosl data, we find thst the curvat.rs ohanges sign.
The exact value of s where the change of sign ocours 1s not easily deter-~
mined; hawﬁvcr the minimum slope can be dotermined fairly sceurately end
is 8.2, The slope determines the radius at which the back shock starts

(see Equation (106))

,ﬂn d “gy(?ﬂ_)minim: -}%; 842

(147)
r = 1,4 x 10* IBM wits = 2.8 x 10% meters
¥e shall not be interested in such large distances.
For the duration of the nositive pulse we find from (1N0a/
i = L g ‘ L!\oR—- (5 )
8 S [-7 SF L (148)
or'with (142) »nd (141)
oL [k Mo | l}
8- L L% o %S 5 | (148n)
o _

The shape of the pulse at a fixed distance as function of time is sinilarly

givian‘by the formula (see Eemation (102))

T -1 R-¢(9)]
z ["Z % Qw R-¢( )J

{149)
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where & veries from its wvalne 5; at t}}e ghock front to -3 et the vres-
sure ainimum and béck to zero, In order to obtain the time in saconds, we
should use for c, ths "IDK-value" o = 17.38.

The peak pressure versus shock redius ourvg is showm in Figure 5, using
"IB¥=-units". For comparison some peints obtained, if we stop the IBM-run
at an en‘rliar instent, are also shown.

The .duration versus peak pressure is shown in Figure 19 of Chapter 7.

The equations for the shape of the pressure pulse are used in the next

chapter, to obtain data for the two combat bombs.

{
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CHAPTER 9

THE EFFECT OF ALTITUDE

Ke Puchs

9.1 IKTRODUCTION ' : oo

One of the easiest measurements of the effect of s nuolear bomd in‘ com~
bat conditions is ¢ measurement of the pressure pulse by nicna of airborne
gauges. The instruments used for this purpose are desoribed in Chepter 18.

Safety eonsldorationa tor the planes from which these gauges are rclonaed

meke it impossible to get close to the bonb- Furtharmoro, since these gauges

are released at great height at about the same #im the bomb is released,

but are attached to parachutes, they will etill Bo at § oomiidcrublo height

when the blast reaches them. o
The information Ncoind from the airb rno gauges was in fact the only a

af'

quantitative informqt,ion on the bombs dropﬁo’;l over Hiroshima and mgnaki. :

until scientific tenms ocould enter thue, 4,,_ims uf'tor the cessation of Bhos~

tilities. The ina‘crumonts recorded at a height of about 30,000 feet, whon».
the -tmocpheric proseure is conaidorably reduced. They were at a dist_ungo,

of 36,000 to 40, 000 roet from the bom’b.

Such large distanooa can be oovorod by the semi-s ...mllﬂn—th.ntx_gm}
o@___i_rg__&hn__pmw- Homver. vn have to estimate alao the orroot

of the change of prossuro ‘and tnmpornturq with altitude in order to inrher-

pret the records. ' ‘ ‘
file shall make the ucuuption thnt the omrgy is onittod unit‘omly iu

all directions. This usumption appnn eninently moomhle, since tlu

eltitude effect will become .pronounced only nft.r the shock w.vo hu ~dpe.yod‘* | 57..,4‘

T IX -1
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into a pressure pulse of length small compared to the distance from the bombe
If in eddition we asaumgtfha ucéustio treatment, we obtain the Rayleigh

correction factor for the over-pressure

ab . [Z5 |
sp, 1 &e, v

whore,f)c;diP éra deﬁaity. sound vylocity and ovsr-proasur, at a givnp height,
anQ{icb’ASYLaro the same quantities for a uniform stmosphere. The duration
of the puige nad the energy in the pulse are unochanged. The latter follows
imﬁsdiqtely from the faot that in the scoustic theory the enerdy in the pulse
is constant.

We have seen in Chapter 8 that the energy-dissipetion in the pressure

pulse is important. Cleerly, if the energy dissipstion is taken into account,

the pressure pulse at s givep sltitude will depend. not only on the conditions

at_that sltitude, but alsp on the pest.history of the pulse. For a linesr

pulse we shall find that the correction factor is composed of two factore.
The first is identical with (i)- The second fector represents a change in
the form of the snergy dissipation tefm. which i;‘u uniform atmosphere is .
(log (R/ry))" /2

a function which depends on the veriation of the atmospheric conditions.

. The log is replaged by the integral dR/R, weighted with

The result is | /1
AP TP { ioq (Rf,) ‘{fjsp 4R
AP&» Joo% ; 03 /‘L / S ~¢ (2)
Clearly N ;‘4 ' y
c (£¢ 234 £e V2
E;'(jlti) ‘ AP, ‘ 'f%gbﬁ) , (3)

The duration of the pulse, which in the acoustic theory is unchanged,

also undergoes a change, if dissipation of energy iz teken into accounts
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We shall find for a linear pulse

R
6 . cs ,‘7’,% "dR [loq (Rfn DA
) /E‘f- £e R/ 3 /

o (4)
g0 that Y
0 % (L%} |
' < ‘é“o ( c (Jpc ) - (5)

The duretion of the pulse therefore insreases with altitude.

In Seotlon 9¢4 these formulse are generaliged for an arbitrary shape of
the pulse.

Compared to the acoustic theory the pulse ie therefore less strong, but
longers 1In principle it is therefore sasy to check the theory by considering
the distortion‘cf the pulse shapey which is approximately independent of the
snergy relegse.

However, if we try to do so, we are confronted with the embnrrgsslng sit-‘
uation that the Hiroshima record and Negasaki record oontradict sach other.

This is the more mysterious, since they were taken at exactly the same alti~

tude and approximetely the seme distsnce from the explosion. THence, we should -

expec’, the shepe of the pulse to be approximately the same in either csse.
In mctual fact the Negesaki record gave m higher peak pressure but exactly
the same duraticn as the Hiroshima record. |

If this result is real, it cannot be expleined aes an sltitude effect,
unlese the verietion of temperature end pressure with altitude diffarod.com-
pletel: in the two cemses. Neither cculd it be explained on the basis of
any effect which obeys the usual sceling laws.

If we trust the pesk pressure measurements, the Nasgasaki Lomb was sbout

times es powarful as the Firoshime bomb, in moderate agréement with the

factor 4 deduced by Pernney from the tlast damage. If the duration of the

™ :
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fféulae is used, the two bombs were equally powerful.

- The Hiroshima recorc gives a shape ¢f the prescure pulse in fairly clcse
sgreerent with the theory; the Kagasaki pulse, however, is much steeper than
exrected.

< The velues of the nucleer erergy release derived from either theory,
vsing the peak pressure cr the duration of the pulse se critericr are given

in the following teble:

RS

Table 9.1

Energy relesse cof combat bombs ir tons of TNT

obtained from
pesak pressure : duration
Nagasski )
) Adoustic theory 35,000 ! _ 20,0600 f’
Thecry with enerpgy dissipation £1,000 i “11,700 .
Biroshima
zAcousﬁic Theory 74 700 | 19,500
‘Theory with energy dissipetion 1¢,600C . : 11,400 -

9.2 ACCUSTIC THEORY

ﬁh meiw the following assumptions:
| (1) The pulse is weak; mcre preciselyt;P <</0c“‘
(2) The length of the pulse is small compared to the radius to
which it has penetreted.
(3) The length of the pulse is small compared to a distarce cver
which the atmosphere changes apyrrecisbly.

(4) The energy is emitted unifornly in all directionse.
- , An importent conseguence of the assumption (3) is that the distortion of

the pulse is confined to a chenge of scele only. In particular the retic
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of the mear square of the pulse to the square of the shock pressure is un-
changeds This is not true if enerpy diselpaticn is taken into aceount, un-

less the pulse hss the asymptotic linear form.

————————

(ap* | (AR) -
(A P;)L (A PSo)L - (©
Fere the au}‘f‘ix o refers to the same quantitles in a uniform atnosphere.
In the acoustic theory all eignals traﬁl with the velocity of sound.
If at time t « o, the end of the positive phase was at r « r,, then

et time t it will have resched the readius 1r, where

. A 9 “
t S é—:}i\' ! ‘\/1
o A Y
~
[+
Similarly for the head of the pulse
el A
£ d¥ N
e{n)
ML,

where L_, L 1is the lemgth of the pulse at tims t = 0, and at tims %e

Subtracting the two equetions we find

rot b, AL
A A
b = ¥
54' R, c(n (7

A ‘
Thess irzteg_ralls, however, are identical with the duration of the pulse.

-Hernce we fird that the duration of the pulse is constante.

-8 (8)

The energy per unit solid angle in the pulse is given by

w —Q‘/A pu dt )

to be integrated over the path of & volume element. For s weak pulce, we

can integrate keeping the positicn in space fixed. Also Ap= LCU - Hence

w- 2R (ap) 6fpc (10)
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The fector 2 arises from the negative phase.
o ‘Since in the acoustie theory the energy per unit solid angle is constant,

it follows with (6) ard (8) that _ »
A . |
L 2
S0 ‘

This 18.the Rayleigh correction for the pressure.

9.2 THEORY INCLUDING ENFRGY DIS3IPATION

In order to include the effect of energy dissipaticn, we shall make

one additicnal essumption to those mentioned in Section 2. That is

(6} The pulse has linear shapes

This assurmption is st least approximgtely true for the positive phase in
the region in which we are interested. Sinse the positive and negative
phasesdo not interlere with each other, the essumption is therefore spprox-
imntely correct.

* one of the shock conditicns is

= [
Ay, 2pe "

in view bf assumpticn (3), we can treat the history of any given volume
elemert on the besis of a theory in a uniform atmosphere. Then the equation

(12) 1is satisfied throughout the pulse
Ap =pev (13)

The energy per unit solid angle is again given by (9); for & linser pulse
. we find

P ,,."‘1. 2
w . R? i1t /2#R* (A 6[Pc
R* [apud 3 ( p§3 /. 14
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The energy dissipaticn in the shook and back shook can be eoxpressed in the

" form (compare Bouation (74) Chapter 8&)

dw - -+ #R@
1R 3 Pi# ‘ 2 {18)
Combining the two equations we find
2 & [RZ(APQ:L o/ + R (8p) et 0 (16)
The shock velocity is given ‘by the Rugoniot conditiom
| %{? = C+ o;%“_%rijs‘ | | (17)

So far we have been concerned only with the local comditions et the point
wﬁore the pulse happofxi to bes We require one nore oquaiion, in which the
variaticn of atmospheric conditions appearse

For this purpose we observe that the average veloqity of the pulse is
given by the sound wl.oa}lty- This follows from the fact that the velocity
of the back sheok lags as midh below sound velooity e the velooity of the
front shock is above sound velocity, and that t’h. pulse is symmetrice The
latter was shown in chupéar 8 by means of the gensral srpument that .t}i’o
total displacemsrt of any volume element decreases as l/_Rz and tharcforo

asynmptotically

Thus the midpoint of the pulse, which is elso the end of the positive phase,
travels with sound velocitye If O is the duration of the pulse at radius
R, we have therefore

t:/RéE'&-—e

J (18)

where t 1s the time when the shock front reaches the redius R.
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.
We nur heve all necessary equaticns and procesd to solve thom. Dif-

ferentiaticn of (18) yioldc

dt _ - 40 |
wOTTaR 19

Cbserving that the second term is small, we find

f flfz B S ¢ 5'.’:,.92.

Comparison with (i yields
_.due . % (21)

dR = 2pc3
This equation can be used to eliminste &P, from (16), with the result

dga‘x. s -3
G [Rpefe QR +RP e (G002 0

dR (22)
Integration of this equation gives
2 _§a32,d0 X 1 ¥
"\f" 9(@).-—00«1:0 ~qB (23)

% .

<t

A second integratien yiolds

—'B/ R . >
WC (24)

where r, 1s another constant of mugnticno

‘Substitution inte (21 gife& the shoek préssure

t .
&, - e.ms/r 9_&3] f2 |
. —
Ps aF R ] (28)
°,
In a uniform atmosphere of density Ja and sound velocity o,, we find the
asymptotic lsw of Chapter & 3/
(AP)_.BU’"‘)‘% | > .
2 " oRYm (Rjfny P el
thus r, should be identified with.the rediue R* in the seymptotic law

)
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for s uniform atmosphers. The altitude correction factor iz the ratio of

(26) end (26)
bbs . [TE e
(Bps)y V2, 6 27

where 9/ 6, 1is the altitude correction factor for the duration, which is

ginn by R y
8 - et X dR [ s
o, .{ [ o N AT Tw /L“ (R/RY) (28)
R#

9e4 ALTERNATIVE DERIVATION

We sha}.‘l now give an alternative dorintipn of the formulee given sbove.
This derivation follows closely that given in Chapter & for a uniform atmos=
phare.

In this derivstion we use the concept of p signalse In & uniform

— atmosphere 2 remsins constant along a'chnctoristico If atmospheric con-

ditions change, this is no longer true. We shall make +ha usumgtion‘ thet
811 & — velues change with the distance from the center of the explosion,
by a common factor;‘&;‘\ , the same for a1l Z « This would seem to be a reason-
able assumption as long as the length of the pulae is amall compared to the
distance over which the atmosphere changes appreciably. Howewer, the oo;.ploto
equivalence of tha assumption about the behavicur of the - signals with
tﬁo spproximation of a small pulse, is only demonstrated by the fact that we
shell obtain the seme results ss in Sombim 943+ For this reason we preferred
the previous derivation, quite afnrt from iﬁé“aiimplicity.

The derivaetion which we shall give below has on the other hand the ad-
vantage that 1t applies to an arbitrary shaps of the pulse end allows us to
meke a prediction about the shape of the pulses The pulse is distorted by

the change in the 2 - wlyes by the factor k '« The shock pressure, however,
-

-
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is changed in additicn by another feotor, expressing the fact that the enercy
dissipation has chang;d and, therefore, the > - yalue at the shock front is
no lenger the same as befcres This second fector has no influence on the
shape of the pulse, except insofar as it cuts off the pulse at g different
S = wvalue- The derivetion of Section 9«3 gave us only the product of theae
two factors. Yow we shalll obtein each factor separutol}.

Furthermecre, in the derivation of Section 9+3, we had an arbitrary con-
stant of integration r,, which represented the radiuec at which the atmss~-
pheric conditions could still be considered uniforme We should have expected
tr{at we should take r, = O» However, in order to get correct results
we. found that r, should be identified with t;he radius R* in the asymptotic
lew for n uniform stmospheres The treatment given below will resolve this
difficulty.

Qur assumption oan be stated in the form
-5k
(29)
where 3° is the value of 2 at the redius r = r, and k 1s o funotion
of the redius. Bauntion (29) holds along the path of & characteristic,
which poes with veloocity c¢ ¢ ue The excess velooity of the charscteristic
ebove the loosl sound velooity is given by O(Z/R-. If at time t « t°,

the characteristic is at r = r,, the equation of the characteristic is

. nJ o
o - G = &L - K (n
t-t )f = j € €T ()

7, " : (30)

K = ] C;’.k dn
2 ‘

(31)

13
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. Here r_ is assumed 2 fixed radius end t° is then evidently a functien
‘of 2. ° K appears only in s srall term and instead of integrating over the
path of a charscteristic, we cen integrete over the path of the shock front.
Then the integrel is independent of Z © ’

At the shock front we have

R
/ é;_dls K(R)

C* (32)
Differentistion yields .
v . [+]
dt . L (K . é_t°)¢.2_s- %25 dK
—— - o a
d ¢ ‘¢’ dz°/ dR % dR (23)
The shock velocity is giver by o
PR PR S N P T L
dt 2R ' 2R 267 AR Ts o (3y)
Compariaon yields )
Z ° q,a &
(K - _59_ 4‘i° 425 + ’é" :’_ d‘ K= &
o dZ dR 2 dR (38)
Let us introduce instesd of R the variable Z defined by
. i
C
4Z - _E...lf..- da L. % h (36)
Z C d ¢
then
K= kn (Z/Z)) .
/% (37)
end - .‘qo Z‘,;
| .'..e.. 55 dZs 4+ 25 =0
(Ln Z/Zo - ) iz * 7z
o (38)

In this form, the veriation of tre atmosphere has been elimineted. Yerce
[+]

fis is the same function of Z, as :i for a unifors atmosphere is of R,
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ieeo . o
! s . )
S 265 ( /
(39)
whe re z—“ (R} is the Zs for a uniform etmosphere« In crder to calculate
© . .
l( we use again the energy dissiretion. The werk done by the pulse per unit

solid angle is

o2 '
Howgver, for fixed r we have from (30)
cit
- - (ol K < )¢5. (a1)
Hence 2: :
a\2 e o
weklpe [ TCEV(AE - 4LTHaz |
° (42)

' We assume that the beck shock has not vet started; then the integral
. -]
extends to the minimum velue of 2 in the negative phase and then back

- -]
to> = O . Differentintion of (42) yields

. s°
dw . dkPPe w4 2 ke =X [ S(Z")”di
dR 4R K pc ¢’ aR ° (s5)
; 43
D‘- Ca d*a dz.
+(Zs)<‘<";7§'-*)-g-a-,’} |

In the first integral the negative phase does not contribute and the pos-

itive phase giver (:g)% .+ Utilizing (35) we find
dw = d(kfc) W k £C i _d
R 4R Kkipc c 2 ( ) "'Pl (44)

The energy dissipation occurs at tre shock front «nd ean be expressed in

the form (ses “hepter 8, Fousticn (73))
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3 0 3 3
dw_ I PAZg < Lot (L) k
d R & R cR

(45)
Using the definition (31) of K it is found thet this is identicel with

the last term in (44). Hence the first term in (45) vanishes. This requires

k=B

A (46)

and

K - L\cz/zw/ o

(47

The shock pressure is given by

APS::fckz:/R

(48)
With (48), (47 emd (39) we find
qf’ ¢ fLl= - ;
APS fC Zg; (Z) (49)

and the mltitude correction factor is

b Iy (2) '
= = [ L& *--—-—'""2” (60)

| (A‘Ps)o /gc' Zos C(R)

The equation (49) can clearly alsc be written in the form
= Z ’3¢ A P (z) . :
—§ Jzﬁ (40m)

where Apg, (R)_ is the shock pressure in a uniform atmosphere.
From (30} follows that the arrivalwef the signal Z° at the radius

r 1is delayved with respect teo thsh shock by the time interval
ot = t° (?)-—z’(‘i.‘) +-°—‘t K (» [5.°~ ?] | (51)
= 1 (E9)- t’c‘i‘h- = A (/2 )[Z -2 ] (52)
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For & uniform atmosphere, we can replace X° by & and Z by Re Compurison

with Boguaticn - (102) of Chapter 8 shows that
Cz '® <
—e_ % CZ)JrZ{’/nn:%(/_)
) (]

(63)
where g(Z} is the function introduced in Chapter 8. Hence
0t o= %& [%CE:)~’ZC§,)*<E:'Z'Q)L”Z‘) (50)
In view of (39) this can also be written in the form
at=be (25 ) .  (s4a)

where Ato is the corresponding funotion for a uniform atmospheres The

durstion 6 is obtained by putting &° . O¢ Then

A 3’ “nZl.8 (3°
6= 5 [4CE)+ 278 Z]- 6,02 (55)

£

The enustions we have derived no longer contain the radius r, except in

Ze It s clear that the equeations should be independent of r, provided

we can find a velue of r, sufficiently large that the semi-acoustic theory
aprlies and at the same time sufficiently small, so that up to the radius ‘
r, the atmosphor-e can be consi;derod uniforme With that assuﬁp‘bion we pro-

ceed to get rid of r_  in the expression for Z. We write (43) in the form

o
:’R R ct eatanne
,- | [ ¢ T A - e R+[ ¢ B } dn
. - —-\-esv' Te : A~ . - "e..r ]
,r[/h Z /Lﬂ- naﬂ + ’Lj C . N - i C Jf' L (56)

Since the atmosphere is assumed uniform for r<r,,» the integrand vanishes

.
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in this region end we can extend the integral to & = o
R '

,@»Z ‘/&R 4] {"‘7

oy (57)}

1t remains to show that our equations coincide with those derived in Section

9¢3 for a linear pulse. For this case (see Chapter 8, Equation (94))
A

J"S (R IR - (58)

1t should be noted thet the R* here has nothing to do with the r_  whiech

0
ws had before, but is determined by the properties of .the pulse as shown
in Chepter B.

From (57) follows

Ln(Z/R*):QMR-!-/ { j_— } ----- - EaRr* 159)

If the atmosphare can be considered uniform up to the radius R‘ this can
i~

be written in tha form

‘ L d?. .
A (Z[RT) - [ g ‘ (s0)

Substituting (58) and (60) into (50), we obtain the formula (27), (28), wim' -

the correct redius R* » It is now clear that the mcassity which arose
previously of identifying r, with R* was srtificial, introduced by the

limitations of a theory which assumes the pulse to be linear throughout.

"The results which we have obtained can be expressaed in termns of simple scale

changaes. Define
R 2 — :
M- "‘Poj {cji fj—":' 4} o | | (61)

since R is proportional to the altitude £ , it can also be written as

h
k;—@,x;o/ {%{Fé*f\}% : (62)
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and depends olearly only on the altitude, but not on the propertiss of the
pulse. Then the altitude correction is taken care of by changing the radius
acale by X » the pressure soule by )JﬁZ‘ZZ; and the time scale remains
unchangeds The factor A appears in the pressure scale becausefc i = RAp
and the i-gcals is changed by the factor k .ngc,/,oé. Hence the sogle
fmotor for RAp is the acoustic correction factor mc, s but the scale
fector for 4Ap itself containe the length sosle factor PN {s8® also Equatien

(499 )+

9.5 EVALUATINON OF ALTITUDE CORRECTION FACTORS

The temperature T is a linear function of the eltitude up to about

10,000 = 12,000 meters. It is given by

' (63)

Y =2 les h (63

T, :
e x 2426 x 1078/ moters (64)

1t follows that the density A2 is givan by {8ee for example Durand,
Aerodynamic Theory, Volume I, pp 319-223),
| R 3 2%
jz‘ = (l-2h) (65)
g"‘
k - 2.128

- (66)

The ‘sound velocity 4s proportional to the square root of the temperaturs

67
—z—; 2 (leah )1/2 (

L
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Subst itution into (62) yields
ah

Inz {5 9;._ | (s8)

o

d

Usunlly ah  will be sufficiently small so that an expansion of the in%egral

can be used

k= (Kﬁ%) ah + (K*.‘;z.‘)gﬁg 1) (ah)z ¢ Er )A%il “'3)(?“ + ) (ah)3+ .

(69)
Also
{
k = Jeco ::-( l-ah )-(k*'f) i
Fe | (70l

9«5 APPLICATION TO ﬂIROSHIMA AND NAGASAKI

r

* k]
The experirental data for Hiroshima and Nagasaki are given in Chapter 18.

Using the semi-acoustic continuatinn of the IBM=run and the formulae for the
altitude effect, wo can dotermiA; the nuclear energy release required to give
the observed peak pressure or the observed duration of the pulse. The energles
obtained in this way have been recorded and discussed in ths introduction.

The sltitude correction is quite apprecisble. The scale factor N\ for
the length is 2.527 and that for the pressures is 1¢442; i.s., the’ pulse
at that altitude was the same as that expected in a uniform atmosphere at
2527 times the distance, except that the pressures have to be increased
by the factor le442.

The predicted pulse shape is shown in Chapter 19, Figures 5 and §,
essuming 11,000 tons energy release for Hiroshima amd 30,000 tons for
Nagnsakls The Hirvshima record agrees quite well with the theorye The
experimental Nageaakl record, on the other hand, looks quite different from

the expected curves This, of course, is not surprising, in visw of the

large discrepency in the energy release estimated either from the peak pressure

APPROVED _FOR PUBRLI.C _RFI EASE




APPROVED FOR PUBLI C RELEASE

IX - 18

or from the duration.

A strange feature of the Wagasaki record is the fact that the shape of
the negative phese agrees very well with the predjoticn, as is shown By the

dotted curvey which is identical with the predioted ourve except that it ie

disnlaced by O«4 seconds.
At present we have no explanation for the shape of the Nagasaki pulse.
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CHAPIER 10

THE MACH EFFECT AND THE HEIGHT OF BURST

J. von Heumann and F. Heines

10.1 _ GENERAL CONSIDERATIONS ON THE PRODUCTION OF BLAST DAMAGE

Bomb damagé to structures is largely caused by reflection on the structures
of the Shqck waée generated by the bomb, and in the case of long blasts such as
causad by‘an at;:amic bomb, by the ensuing blast wind. In this article we will
cansidér the pressure criteria which determine the height at which the bomb
should be burst so as to maximize the area of blast damage, The problem of
maximizigg the incendiary effect of the atomic bomb is treated elsewhere in -
this”volume. | | | | ?
The first conelusion one reaches in studying the problem of blast damage
is- tha& the problem is extremely complex and can only be solved in a statistical
or averag@ manner, This is so for two reasons; first, the detajiled descrzptien
of a militafy target can never be completely glven, and se¢ond, the complete
analy@icalnsolation of even such a relatively si@plevpfoblem as the beﬁa#ior of
a blast wavé incident on a wall at an obligque angle has never been'obtained for
all angles. As we shall see later, a solution of the basic problem of shock

reflection from a rigid wall can be obtained by a combination of theory and

experimen;.k‘This_éolution is, however, not readily adapted to yielding the
effect of'?last in better than an average sense in 2 more complicated situatii
As to ihekdetailed description of the target, not only are the structures of’:
odd shape, but they have the 2dditional complicating property of not being r:g

This means that they do not merely deflect the blast wave without absorbing

=1
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energy from it, bat take a tariff on the blast at each reflection.

In addition to being weakened by destroying structures, the blast may,
of course, also be weakened by imparting kinetic energy to the debris. The
removal of energy from the blast as it does its job decreases the blast pressure
at any given distance from the point of detomation to a value somewhat below
that which it would have in the abaence of \dissipative objects such as buildings.
The presence of such dissipation makes it‘necessary to consider somewhat higher
values of the pressure than would be required if there were only one structure
set by itself on a rigid plane, The ideal would be to determine for a given
explosjion and given target ccnfigurabion the required pressures by treating ’
these diffractional and other losses theoretically and from first principles.
Syen this, however,would probably be too difficult in any well defined but
realistic special case, and, furthermore, the necessary statistical theory to
derive valid #%erage results for the actual irregular and variable target con-
figuration is not known. The next best procedﬁre would be to derive from theory
or from experiment the lethal pressuares for a given isolated structure, to
average this properly over various actual structures, and then to cempare this
with the average pressure level at which the damage under consideration has
been empirically found to occur. The ratio of these two pressure levels would
then express the losses in question., This procedure is not practical either,
mainly because the first mentioned pressure criterion is not sufficiently well
known or sufficiently reprodgbibly defirted., These influences must therefore
be accounted for in qualitat;;é ways, noi on &n absolute basis, but rather in
the sense of comparing them in two situations - one, the situation of actaal
interest, and the other one, a standard wh;re the pressure level corresponding
to the observed damage radius is empirically known. o

The pressures which are actually inflicted upen a giv;n structure will

have been amplified by reflections from its own or nearby surfaces and decreased
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by diffractions around openings and corners. The latter forms part of the
losses referred to above. The former may cause local increases in pressure
which will, under suitable conditiohs, be quite considerable. For over-
pressures of less than, say, 10 pounds per square inch, the acoustic theory
applies in the main satisfactorily, except for rather glancing reflections.
According to it any reflection, head-on or oblique, doubles the overpressure

at the surface. (Coneerning the limitations of this assertion - cf. Section 10.3.)
It is not difficult to find geometrical arrangements where as many as three |
such reflections superpose their amplifications without any losses, e.g. the
phenomenon of & shock running into a'90° corner.’ (Pigures la, 1b, and lc.)
Thus, in such a case there is a local increase in pressure of four times the
initial overpressure in the shock, even in acoustic theory. (The exact shock
theory gives even higher increases, cf. below.) The case cited is a special
example of the more general problem of the pressure increase which may be
obtained when an acoustic shock runs into & corner having an angular opdfiing &
at an angle of incidence . In this general case it can be shown that the
proasure' increase to be expected is np where p is the overpressure in the shock:-
wave, n is the nusber of shocks that have traversed the region; n is determined
by the angle of the wedge O and the angle of incidence o(. Reasoning from

the fact that infinite pressures are expected in a convergent cylindrical shock
as: |

. @ —> 0 for o = 0/2, n —> oo

By

The actual pressure amplifications that can be attained are limifed by the
rarefaction wave from the edges of the necessarily finite wedge.

These local increases are real and well-known: indeed the blast is noto-
riously erratic, and frequently affects some parts of a structure much more

than other closely adjacent ones. In spite of its reality, it is clearly
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Figore 1,8, 040, -

1 Original shock o
2 Shock reflected omoe
3 Shock reflected twige
4 Shack reflectsd three times
p = Overpressure

770 Walls L 'y
Po + P = Pressure in regions shocked n times

(n = 0,1,2,3, §
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hopeless to attempt to follo; this effect into all its ramifications. On the
other hand this is not absolutely necessary, since what is really needed,is an
average statistical theory. Now these local reflection amplificatiqns and the
opposite diffraction shielding effects which necessarily accompany them in
neighboring areas, are clearly all perturbations of the main blast phenomenon,
caused by the irregularities represented by the target and other structures.
Consequently what must be estimated is this: Which formations can be dis-
regarded as local irregularities not materially affecting the main, average
evolution of the blast wave?

We do not possess an exact theory of this phenomenon. There exist, however,
good gulding analogies with acoustics and optics - that 'is, with linear wave
theory. It is well-known (cf., e.g. Wood, Physical Optics) that irregularities
with diﬁensions of less than 1/16 of & wawve length leave reflection "perfect”
from the "optical” point of view. Probably a good deal less than‘thia, as
much as 1/i wave lang£h3 will not affect average intensities significantly, i.e,
they are negligible in the sense outlined above, ‘The linear dimensions of
typical hoéses’are of the or@er éf 30 feet to 50 feet, they may conceivably geo
up to the order of 100 feet. Hehce\they are negligible for wave lengths of -
120 feet to 200 feet or ov:}, and even in extreme cases for wave lengths of
400 feet or over. In the casc'of a blast wave, a certain difficulty is caused
by the absence of a well-defined wave length in combination with departures from
linearity for higher shock strengths, It is clear, however, that Fourier
analysis,;aa well as any other poésibly preferable decombosition procedure, will
have to assign to the length of the main blast the essential role of a wave
length. This main part of thé blast wave is the so-called positive phase of
the blast. Hence, it is felt to be Justified in treating houses as statisti-
cally irrelevant perturbations, if the p%?itive phas&:has a spatial tension of

at least 120 feet to 200 feet, or perhaps at least LOO fest. It is clear that
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these arguments are loose and rather qualitative, but they probably do justice
to the main features of the situation.

The length of the positive phase of the blast due to an explosion caused
by W tons of INT - or any other explosive or‘cquivalent blast energy - varies
slowly with the shock pressure level at which it is taken, and is proportional
to Wl/3. In the significant region, which will turn out to be at § té 10
pounds per aduare inch, the duration of the positive phase is about 0.025 seconds
for W &« 1 ton.

The shock velocity in this range averag;s about 20 per cent higher than
sound velocity, i.e. it is about 1.2 x 1100 feet per second = 1320 feet per
second. Hence the length of the positive phase is 0,025 x 1320 feet = 33 feet.
For a nuclear explosicn, say 20 x 103 tons fﬁT~blast equivalent this becomes
(20 x 103)/3 x 33 feet = 900 feet.

To sum up: For the nuclear explosions under considera®ion (and actually
even for much smaller explosions) houses and other obstructions of comparable
dimensions may be treated as small perturbations which do not appreciably
affect the main evolution of the blast, For a lgter application it is useful
to point out,that houses, quite apart from their established "small" size, are
also a feeble overall influence because they cover oniy a smal) part of the
,ground. Even in "built-in areas" they hardly ever cover more than 25 per cent

of the ground, and therefore,the progress of a blast wave alcng the ground

takes place in the main over a smooth surface.

o

"

This being understood, the one ébstruction which cannot be disregard;d on
these counts will now be considered since its dimensions are more properly
described as infinite., This is the ground itself. In other words: In follow-
ing the main evolution of the blast, the reflections and diffraction of a blast
from everything else but the ground can be neglcctgd, but its reflection from

the ground must be taken into account. According to these principles, -




e
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the ground can be treated as a plane reflecting surface as long as its formation
is plane from an averagé topographical point of vie‘w. (Focussing, shielding,
and other gross effects of hills, valleys, etc. are well-known, but we do not
propose to consider them here.) Also, since its density is 1,000 times that

of the air, the transfer of energy through the air into the groumnd is negligible
and it may therefore be treated as a rigid reflector.

There is a great deal of direct experimental evidence confirming these
views (cf., e.g. data obtained at Woods Hole and Princeton on high burst).

Thus we have reached a standpoint where the reflection of the blast frim
the ground, idealized as a rigid, reflecting plane, is taken fully into accéunt.,
and all target structures are then viewed as immersed into the average pressure
fi?ld thus produced. Two situations (in two different explosions, at two
different positions) for two targets will be viewed as equivalent, if the
surrounding pressure fields obtained in this manner appear to ba equivalent.

Thus far nothing has been saidl about the characteristics ot:; a pressure
field which debermi;xe damage.v A static pressure, i,e, one which lasts forewerJ
will damage & given structure in a given way, if it exceeds a certain minimum
value pg, which is easily dourn_gwd experimentally. A pressure which lasts
only & sharter time, say t, will élearly have to exceed 2 higher mminm value
pPt,in order to cause comparable effects, Clearly py will not differ signi-
ficantly froﬁ p eo , if t exceeds some time T characteristic of the structure
in question, being essentially the elastic half period of an elantié structure,
or the time in which irreversible basic deformation occurs in the case of an
inelastic structure. For o\rdj,,nary houses, etc. this T is of the order of
15 milliseconds.® For the 900-foot long nuclear explosion blast (cf. above),
which therefore lasts about 3/L second, this limit is clearly far(exccoded.

In actual blasts p varies with time: p = p(t). When the dt;;'ation L7,

experience shows that the significant damage criterion is the impulse f pdt.
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fqr a duration which is» £ , the beginning of the peak pressure curve up to
7~ 1is in the main p(o), and it is known that the significant guantity f;om v
the point of view of damage is the peak pressure. Thus for nuclear explosicns
(cf, above ), the da@age criterion is the peak pressure viewed statically and

the situvation boils down to something fairly simpie: reflection from the ground

and then only the peak pressure to consider.

10.2 THE HE;GHT OF DETONATION AND A QUALITATIVE DISCUSSION
OF THE MACH EFFECT

A bomb detonated on the ground is certainly closer to the target than an
air burst. For an air burst bomb, the height of burst has.no profound effect
on the blast receivcd at a point which is several times the height of burst
groQ the bomb., At distances which are small or of the same order as the height
of burst, the fact that the bosb is air surst has a profound effect on the blast
ch#racteristic. In the immediate neighborhood of a gréund burst & target suffers
éxtremely high preésures which it ;ould not receive if the bomb were air burst,
For‘big charges this is, however, not an advantage because it means that the
idmediatc neighborhood would be destroyed more radically than is necessary, and
the énergy so wasted would not be available elsewhere. In other words, the
inmediate neighborhood would be overpulverized.

It is actually practice when using smaller bombs to try to make a full hit
and detonate it exactly on the target, When using larger bombs, however, one
does not try to make a full hit, but ralher to wreck an entire area. In this
case there is some point in trying not to detonate it on the ground, but at &
certain altitude. In this way the area nearest the bomb is not overdestroyed,
.more energy is not used on it than is required, and the air burst does not
permit nearby structures to shield those which are remote.

For nuclear bombs there is a further reason for detonaticn at an altitude.
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It is not desirable to let the enormous temperatures (about 10° to 106 degrees)
immediately around the explosion get in contact with matter in bulk, in
particular with the ground. Such contact would allow the wastage of much
energy in evaporsting the earth.

An example of the loss of energy from the explosion by evaporation of
matter in bulk can be found in the disappearance of the tower which carried the
atomic bomb at Trinfty. Figure 2 indicates the asymmetric shock-ball, as
actually shown in several Fastax photographs of the explosion. It shows that
the progress of the shock wave has been visibly retarded where it intersects
the tower, presumadbly because of the loss of energy incurred in evaporating
the steelwork.

There is a further advantage in air burst, a discussion of which constitutes
the bulk of this report. An air burst is accompanied by certain forms of blast
reflection which would not occur in the case of a surface burst.

As an orientation let usvfirst consider the case of a bomb detonated on the
ground. It might at first be thought that because the shock has a hemispherical
éhape and always touches the ground at right angles there would be no reflection
from the grcund. 4Actually, this is not true. If the ground were an absolutely
rigid reflecting surface, then the energy normally transmitted to the lower
hemisphere will not disappear but will be sent into the upper hemisphere in
coincidence with the energy ncrmally sent there in the absence of the ground.

In other words, a bomb detonated on the ground is equivalent to two bombs insofar
as the blast in the région above the ground is concerned. Now twice the charge
weight means, if one considers peak pressure,Lthat all pressures are the same

for the grouﬁd burst charge as for the same éharge burst in free air if all

distances from the charges are in the ratio of the similarity(l) factor 21/3.

(1)
The similarity factor comes from the fundamental hydrodynamical equations
in which the distance, R, always occurs in the combination R/WL/3 with the
blast energy W; i.e. the unit of length is determined by the blast tonnage.
The time scale is similarly extended. '
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Pigure 2
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Comparing pressures at the same point, in the region in which preasure decreases
as 1/R or 1/R3/2 (R = digtahﬁn rfom the bomb) peak pressures are obtained in the

presence of the ground which aré 21/3 teo 21/2 higher because of reflection,

The 1/R law holds roughly at large distances, i.e. low pressures, but the variation

is like 1/33/2 in the region of interest, at 5 to 10 pounds per square inch. |

It is clear that one would not get the indicated pressure increase if there
were cratering because cratering means that some energy does go into the lower
hemisphere, In other words: If the bomb is burst on the ground the peak
pressure is increased to anything from 1.26, (21/3) to 1.41, (21/2) times its
original value provided that no cratering occurs, and less than this if there
is cratering. |

let us now consider the effects of air burst, at distances which are great
compared to the height of burst. It is common sense to expect that at such
distances this height itself, and all phenomena caused by it, ought to have a
small influence, and as the distance increases become entirely negligible.
Hence one should expect, that for air burst at distances which are very large
compared to the height of burst (as for ground burst at all distances) the
pressure is amplified by 1l.41 at most if there is no cratering and by appro-
priately less if there 1s,

Now one must observe that this pictﬁre is in disagreement with the acoustic
theofy. This is of importance since the above picture is plausible and will
turn out to be the correct one.

10.2-1 Acoustic Picture of Air Burst

We will now describe the action of an air burst charge in the acoustic
approximation.

Independently of this approximation, the shock which emerges from the bomb
bursting above the grcund,will be spherical and remain so until it mskes contact

with the greund. Ing:ed, up to that time it is effectively in free space and
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behaves accordingly.

When the shock sphere hits the ground, it produces a reflected shock. 1In
the acoustic approximation this reflected shock is a part of another, which is
congruent to the first one, and behaves as if it were the blast wave coming
from a "virtual bomb", which is situated at the image point of the real boab,
reflected with respect to the ground.(Figure 3). When the shock first hits
the ground, it does so at normal inclden¢e, and hence, by acoustic theory
doubles the overpressure,. i.e. the pressure increases over atymosphere in this
region. Even later, when the shock sphere intersects the ground at oblique
angles, the laws of acoustics also call for"a doubling of overpreashrtfpr» gff,
presanrcsincreasc above atmosphere in the twice shocked region at the refleeting
surface.(Figures 4 and 5). In other words: At all angles o(#® 0°, < 9&‘; 
the reflected overpressure is independently of o equal to 2p (p = the incident
overpressure)., For o = 90° the‘incidence is glancing and no reflection in the
senss of lcouatici“éccuraﬁe!t. however, the discussion of ground burst above;
cf. also the non-acoustic discussion of nearly glancing 1ncidence_in the
succeeding pages). .

let us now try to give a complete chronological accouﬁt of the sequence of
events as the blast wave expands, gets reflected, etc. Figure 6 shows the

appearance, in the acoustic approximation, of the blast pattern as it travels

. outward from the air burst bomb,

The essential features of the reflection phenomenon are:
(1) Incident and reflected waves make equal angles with the ground.
(2) The pressure increases in the incident and reflected waves are
equal.
(3) The totsl pressure increases exerted by the blast at any point
on the surface is twice the pressure increase to be.expectod at

the same distance in the absence of the ground.
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(4) The incident and reflected waves have a constant separation,
equal to 2h; i.e. twice the height of burst at the zenith., At
an angle g from the zenith the separation is smaller; it tends
to 2h cos § as the wave expands out from the bomb (real and
virtual). For @ = 90°; i.e. on the ground, the separation is
of ecourse 0, since the incident and reflected waves are neceasarily
in contact there. Correspondingly, the separation tends to O

(S)-—-—) 90°; i.e. as the ground is being approached,

(5) 4As the wave expanda, ©, the angle of incidence (and reflection)
starts at 0° and approsches 90° in the limit of large distances,

Figures 7 to 10 indicate the p, t dependence (ov‘er‘p;e:sure versus time.
dependonco). at eelorct.od positions in the blast pattern: Figure 7‘ shows the
single rise to 2p everywhere on the ground; Figures 8a, b and ¢, the double rise .
to p and to p + p' at a fixed height above the ground for increasing mo,),o”cud
-distances from the bomb; Figures 9a, b and ¢, the correSpondiz;gv double riaeA at
a fixed genith a‘nghle and increasing distances from the bamb; Figure 10, the
double rise anywhere at the zenith. p is the free air overpresm;re at the point
under consideration; p' is the additional reflected blast overpressure which is
describable as originatigg from the "virtual bomb™ - since any point above the
ground is closer to the reaJ; than the "vix:t.ual bomb" p>p', but this difference
tends to zero (even relatively to p) as the distance frdin the bomb increases.

In Figures 8a, b and c, the time interval A\ t between the two shock
(pressure rises) tends to zero., In Figures 9a, b and ¢, At tends. to 3.‘.9!32.'.11
where C is the velocit.y of sound. In Figure 10 Ot is %

All these sketches are atrictly valid for shocks uit.h overpﬂaams of'
infinite duration only (Fiam 11a). Actually a decay of t.he omprouuro occurs
behind the shock because of the finite duration .of the prlosien‘ (ﬁgdfe 11b).
Consequently Figure 7 1is ch;ngod in u:é manner indicated in Figar;‘x:z, and
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Figure 7
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FPigure 9
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Figure 1l
a,b
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Pigure 12
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Figures 8 to 10 are affected As shown in Figure 13.

The situation depicted in Figure 13 is of sufficient importance,as a

consequence of the finite duration of the shock overpressure, to deserve o;:e

" more comment, Depending on the height of burst ;t is quite possible that no
amplification of the original (free apace)l pressure by the reflected shock occurs
everywhere, '

The drop shown in Figure 13 between the pressure rises p and p' may well
exceed the second pressure rise p'. However, at or near the reflecting surface,
because of the (exactly or approximately) simultaneous arrival of the two shocks
in that region, amplification must certainly occur.

10,2-2 Critieism of Acoustic Picture - Farpation of & Mach Stem

Certain parts of the above acoustic 'deocript.ian of the blast pattern from
a charge burst above ssrigid gx;omd are in disagreement, first of all with our
intuition and, secondly, with the facts.

As to the first point, we have tlroadyspokcn of replacing the sourcé R
wall system by & real and virtual scurce - an explosive dipole. Now one would
expect that from large distances, such an explosive dipole having the combined
mass would look like a single charge, This conclusion is analogous to the result
in electrostatics, according to which the field produced by two equal electric
charges of the same sign is essentially the field of the total charge when the
distance to the point of observatiom 1is great f:anpared with the separation
between the charges. As to the se Pond point, :En reality for shocks of finite
strength, the situation s like the one expected intuitively in the preceding
section, for the following reascn., The permensnt separation of the original
and the reflected ahockl ﬁﬂ_géoustie theory (cf. above) is clearly due to their

having the sm velocit; +e. sound velocity. Actually shoecks.of finite
atrength are: faster than ‘md Farthermore, the rorlcctcd shock is faster than

the original one hecause it travels through air hontﬁd by the former, and hencc,
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: has its speed increased relative to it. In‘fact, we know from hydrodynamics
(ef. Section 10.3) that if one shock follows gnother, and is in the region of
positive overpressures behind that shock, i.e., in the positive phase, then it
travels faster than the first shock. Consequently, while acoustically the
reflected shock im not abie to catch up with the incident shock, if the shock
has a finite size it will in reality catch up in regions where the positive
phases overlap. 3ince the two shocks are close together\noar the ground and
in contact at the ground, the positive phases certainly overlap in this region,
The reflected shock is therefore faster than the direct shock and since they
are getting more and more parallel as time goes on, & merger should sooner or
later take place here.

We'know in fact from the theory of oblique refl;ction and from experiment
that the abov;bis the case and that the overpressure at the fusion shesk is
about twice that at either of the two original shocks. As the spherical shock
expands conditions bécome suitable fﬁr fusion further and further from the
ground. Consequently, the fused portien gradually rises and covers more and
more of'the shock sphere and it is possible to show that eventually the merger
is complete and the two shocks are fiqally everywhere fused and form a single
shock front. In other words, the shock due to the virtual boab will have
everywhere overtaken the shock of the true bomb; the two shocks will have

morg%g over the ppheré(z) which corresponds to the double charge. Figures 14

m - l @
If the charge is burst at such a height that the merger occurs at great
altitude, say 30,000 feet, because of the variation in density of the
pre~shocked air neither the original nor the fused shocked front will
be spherical. (3ee Chapter on Altitude Effect,) Since we are here
primarily concerned with the merger near the ground we will not discuass
thi' pomt.

s

and 15 show the appearance for a wave of finite amplitude, of the blast pattern

as it travels ocutward from the air burst bomb. The essential features of the
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Figure 14
Reflection of a spherical blast wave of finite amplitude
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Figure 15
Growth of Mach stem”
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reflection phenomenon are:

()’

(2)
(3)

)

(5)

fnciidcnt and reflected waves do not intersect on the ground

for all angles of incidence greater than a eritical angle SDC .
When incident and reflected waves intersect on the ground they
do not make equal angles with the ground. |

The overpressure in the incident and reflected waves are unequal,
The total overpressure -exerted by the blast at any point on the
surface varies with the height of burst, the projected distance
from the bosb, ang the blast energy released by the bomb, It

is not obtained as in the acoustic approximation, by ﬁultiply-
ing the free air presgure at the point in question by a factor
of two. |

Tho"incident and reflected waves have a sepa!ation at the zenith
which,as the waves expand, at first varies little from the value
2h and then decreases to zero as the fusion process proceeds., At
an anéle from the zenith the separation in the early stages of
the expansion is smaller and becomes zero as the two waves fuse,
forming the Mach stem.

At distances which are large compared to the height of burst, the
direct and reflected waves from an &ir burst bomb have fused and
proceed outward as a single shock. From complete fﬁsian on, the
shock wave appears to have come from double the charge detpnated
on the ground, |

As the wave expands, © , the angle of incidence starts at 0°
and the stem becomes perpendicular to the ground in the limit of

large distances.

Figures 16 and 17 indicate the p, t, dependence (operpressure versus time

dependence) at selected positioms in the blast pattern. Figure 16a shows the

. b ki
APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE
X -3

#%

Figure 16, a,b,c,
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single riss to o p everywhere on the ground. Pigares 16b, ¢, show the
dependence of o on the angle of.”inciméa for strong &nd weak shocks respec-
tively. Figurea 17a, b, and c shaw the double rise to p and them to p + p' at |

a fixed height above the ground for increasing projected distances fi i the bomb. e

Figure 17; s b, and ¢ also apply to the oorrospmding double rise at ti;ixad
zenith tngl‘ and mcrusm distances rfct",the bomb, All these wtqbea are

' valid only‘ for shocka} of infinite duration, If the pressure has a finits dura-

| tion, Figures 16 sdl7 should be modiﬁied in & manner similar to the modificationa
(Figures 11 to 13) of Figures 7 to 10. .

10.2-3 _Qblique Reflection - Deviation frol Acoustic Bebavior

A detailed theoretical discussion of the shock wave pattern produced by the
reflection of an expanding *"spherical shock wave from a‘rigid plane surface must .
start with a description of ‘M£ happens exactly on the ground where the incident
-and reflected shocks always intersect each other, and where the reflected shock
was originally produced. It will be recalled that according to the acoustic theory
~a reflection almays pfoduceé the same increase in overpressure as the incident ahqck" .

This result is ;lndependent of t.hevanglo of in‘éj.donco up to, but not includ-
ing 90°, at which it ceases to be v:alid. If the shock is of finite strength,
there will bd deviations from the acoustic result. Since the acoustic behaviom is
discontinuons at 90°, one would expect deviations from acousticity t.g set in
earlier than 90° for the true shock must exhibit some kind of continuous behavior
in the meighborhood of 90°. There are, then, two factors which perturb the
~acoustic behaviar: the finite strength of the shock and the obliquity, especially
in the neighborhood of 90°.

10.2-4 Head-on Collisien |

let us first consider the true behavior oi‘ & finite shock for a head-on
reflection. (Ses Section 10.3 for detailed calculations,) The result is usually
stated as follows: A shock which hits on absolutely rigid wall will be

strengthened more than the scoustic theory predicts. The acoustic theory
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predicts a doubling of overpressure at the rigid wall., This is an incomplete
description because there are two different ways to measure the strength of a
shock. One measure is the absolute ovefpressure in the shock; i.e., the
difference in pressure immediately before and immediately behind the shock

front. The other measure of shock strength is given by the relative overpressure;

i.e., the ratios of the pressures immediately before and behind the shock front

minus 1. Now, in the limit of swall overpressures, it does not matter whic;

criterion is adopted because the reflected shock 1s squsl in strength to the
incident shock if moasuréd either by the pressure difference or bj the pressure
ratio mi:;s l. For finite shocks, however, the reflected shock is stronger
than the incident shock if measured by the pressure difference and weaker if
measured by the preasure ratio‘hinus 1.

The clearest example of this is the case of a very strong shock. Here it

‘is well-known (cf. Section 10.3) that for air the reflected shock has an over-

pressure eight times greater than the original one. On a relative scale
although the reflected pressure is eight times as great as the incident pressurs,
the incident pressure is very great compared with the initial pressure of the
unshocked air and theigfore the strength of the reflected shock as determi§a§

by the second criterion is very much less than the strength of the incid‘ﬁﬁvi'

shock. To summarize, the absolute overpressure is greater and the rtllt&;lﬁ\

overpressure is smaller. We will measure the shock strength by the tbc‘ofh‘m‘
overpressure and on this basis the reflected shock is stronger than the incident
shock.

10.2-5 Simple Oblique Reflection ' \
In the acoustic limit the incident and reflected shocks form a stable

configuration regardless of the angle of incidence regardless of the shock
strength., Since the two shocks have the same velocity component parallel to

the ground as their point of intersection, O, the angles of incidence and
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retlcctiﬁn vili 81lso be equal. This is, of course, jJust the application ot.
Snell's principle in a very simple case.(Figure 18).

Let us nom consider the case of a finmite shock, where the reflected and
incident shocks may be of unequal strengths and hence have unequal velocities
relative to the air and ground. If the intersection of the éwo shocks is to
resain on the gi,iomd this difference of velocities requires that the reflected
and incident shocks make unequal angles with the ground. If we set up the
eqnat.io{:a of motion (cf. Section 10.3) we find that there are as many equations

"~ as there are variables and, in general, there are solutions.
; »

We must qualify this last statement. In the first place, when there exists
a soiution » there exists, in general, another one as well, 'mukaA there ars. two
solutions; i.e., given an incident shock the reflected shock can be in t‘.uo)
éonitiom, one less and one more inclined to the surface (Fdgure 19). The
reflected shock which is steeper, turns out to be faster. This is easy' to seo
both qualitatively and mathemmtically. One, therefore, has to ask which of
these two shocks exists in reality. It is relatively easy to see that under
these conditions it is the less strong shock which exists ‘because if we continue
to decrease the strength of the incident shock and go over to the acoustic case
we find that the less steep shock goes over asymptoticalldy to the same strength
as the incident shock at the same angle, whereas the steeper shock goes over
into a finite non-acoustic shock and becomes vertical; i.e.,, as p incident
— 0, 03-—~> 0, 03 —> '%T' Now since this latter does not happen, and is
energetically impossible without an external source of energy, we assume at
least in the case of a weak shock that“rit is the less steep, weak solution
which exists. A’j'V?Ome might assume by continuity, although this arguaent is not
quite safe, that the strong reflected shock is forbidden for all incident shock
strengths. The axperimental observatfézx‘: bof a.:u who have worked on this subject,

in particular the very detajled observations of L. G. Smith, support this
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‘Figure 18

= 6, acoustic case
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Figure 19
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conclusion. If we consider this oblique ahéck thedretically‘uhd let the angle
at which the incident shock strikes the wall increase from 0° touérds 90b,'
the gl&ncing~va1ue, we tind'that as this happens, the less steep bfiﬁheltwo
reflected possibilities gets steeper aédiotocper, the initially sit‘pnr
solution becomes less steep. In othor-i;rdu. the tw; solutions fqr-tbe re-
flected shock move toward each other., We are satisfied thlp it 1n.tha less
steep solution which is rezl, Hotav& ’ ‘tt;on the incident shock has reached a
sufficient obliquity the two solatiéns tbi the retideted shocks merge; i.e.,

become identical, and beyond this there is no solntion;(3) 8o there is an

[£)) '»
For shocks of reasonable strength this obliquity is far from 90°

(cf. Chapter ﬁ e.g., for a shock strength of about an atmosphere this -
angle of incidence is about 50° and even for & shock strength of 0,1
atmosphere this extreme angle is around 80°,

extreme angle below which there exist two solutions for the reflected shock,
an angle at which there is just one solution and beyond'which there ig no solution.

10.2-6 The Critical Angle - Irregular Reflectioa

There is then, an extreme angle below which there are two solutions. We

choose the lower solution for tolerably good theoretical reasons which are véry
well confirmed by experiment, but beyond this extréme angle there simply is no
reflection of this type. There must, however, be a reflection of aoms’kind.
We call the reflection of the first kind, the reflection which really is the
extrapolation of the acoustic case, regular reflection, and all kinds of other
reflection, irregular. From the above, one can see that the region of regular
reflection is limited to angles of incidence below a certain critical angle.
Now the vari;tions with shock pressure of the limiting angle for regular
reflection are of some interest (Figure 20). It is quite clear that as the
shock strength is decreased, the acoustic limit is approached and, therefore,

the limiting angle must be nearer and nearer to 90°. For reasens previously
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Figure 20

Critical angle at which regular reflection
ceases to be possible, as a function of the
overpressure in the incident shbck

Ideal gas y = 1,40,
Normal pressure = 14,7 psi
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mentioned, as the angle of incidence becomes close to 90°, deviations from
acoustic behavior‘ahould be expected no matter how weak the incideni*ahoék is.
Theory as well as experiment show that such deviations do occur. As wil; be
shown later (cf. Section 10.3) the critical angle converges to 90° ;athe; slowly,
as ;he square rcot of a shock strength. More interesting is the fé¢£ that as

the shock strength increases, the critical angle decreases from 90°i For a few
atmospheres overpressure it gets into the neighborhood of 40°. Forténe ;nd‘
one-half atmospheres overpressure it reaches 40°. After this it does a peculiar

thing. It drops a 1little below 40° to something like 39° which it reaches at

6 atmospheres overpressure and then it rises again to 40°, which value it retains

for infinitely strong shocks, This means that for shocks of 1,5 atmospheres or
greater, the critical angle has already practically reached its limiting fﬁlue
of 40°, For h&].f an atmosphere oVerpressure, it is 500 or 60°. S3ince nolt
blast damage by large bombs is based on comtrolled pressure m'itcria; and likely
to occur between 3 and 6 pounds per square inch overpressure, that is, between
& quarter and one-half atmosphere, we must expect regular reflection to’' become
impossible in the neighborhood of 50° to 60°, ‘

Another interesting characteristic of regular reflection is the vatiation
of the absolute overpressure on the surface as a8 function of the angle o.f.in—
cidence and the strength of the. incident shock. Figure 21 gives the ml#tive

overpressure as & function of the angle of incidence for acoustic, weak and -
..

PN

strong shocks.
10w.2-7 Mach Reflection
Now we must ask what will happen' if we go past the extreme sngle of -

1]

regular reflection. There is a very simple argument which uses the anq;logy of
this phenomenon with the collision of a blast with a wedge.

10,2-8 Collision of a Supersonic Flow with a Wedge
A plane supersonic flow is incident on a8 wedge of semi-angle 6,, . As the
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Figure éh

Relative overpressure on gurface due to reflection
versus angle of incidence
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Figure 21b

Relative overpressure on surface due to reflacticn
versus angle of incidence

Ideal gli X 1.4
¢- .t. g-_._ __E.
where p = pressure in front of incident shock
P, = pressure behind incidemt shock
p! = pressure in front of reflected shock

.

For acoustic oas‘ § = =
b ~ ._.E__- -.....
% £+¢A ""’_ i P*n ' P
. 4 '
' /et = ‘:_.f.._ = 40
Ap = p = p —
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D = overpressure in incident shock
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flow Gollides witir the wedge it is deflected through an angle\9(+ o, ) by
a shock S50S becoming parallel to the plane side of the wedge. The conditions
are 'ghqﬁltant throughout the regions A and B which are separated by the shock
diac;qtinuit.y 80S. It is found experimentally, and could be shown by theoretical

consideration of an obligue shock,(") that depending on the wedge angle @,

(&)
Taylor and MacColl, "The Mechanics of Compressible Fluids" in W. F. Durand
*Aerodynamic Theory", Guggenheim Fund, 1934, Vol. III, Section H.

there is a critical value of the supersonic material velocity for which no shock
exists which is capable of deflecting the stream so that it becomes parallel to
the we('igoﬂwall. Above this critical value of material velocity there are in
general_tmo theoretical solutions(“) for each wedge angle, Only the solution
with t‘h?tb,ka'baller value of Oy actually occurs. At the critical value there is
JuSt ﬁe‘ihution and below it there are no solutions of the type pictured in
Figure éZ.. Instead, experiment shows a detachment of the shock wave from the
top of the nedge such as pictured in Figure 23 This is the so-called "detached
headuan" This means that there is no solution of the type pictured in Figure 22,
that conlidering a given value of supersonicity, there exists an upper limit on
the mglo of incidence (0p - Ow} for which the flow can be rendered parallel

to t.ho"uedge face immediately behind the shock. Beyond this angle a new type

.of phonmenon is in evidence. This is the detachment of the shock. It is of

particalar interest because it means that signals are sent back from the tip

at 0 into the region bounded by a now curved shock: there is a propagation of
‘ T E o

*

aigngls'back against the impinging stream.

The, connection between this phenomenon and the reflection of a blast wave
from Q phno surface can be shown in a simple way‘.‘ In Figure 24, the incident
shock lmpinges on the wall éiving rise to a reflected shock. If we adopt the

frame of reference which reduces the motion of the point P and the two shockas
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Pigure 22 .
Flow past wedgs
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Figure 22!
3upersonic flow past wedge
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Figure 23
Detached headwave
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Figure 24
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to rest then the mmterial will appear to flow ﬁhéoggh the shocks from left to
right as shown. The incident shock causes the mat.c.:rial orig%nally flowing
parallel to the wall to be deflo.cud toward the wall in the direction of X.
The reflected shock renders the flow again pai'allel to the wall, If we identify

the flow in the region between the two shocks with the supsrsonic stream of -

Figure 22, the reflected shock with S0 and the wall to the right of P with the

wedge wall in the same figure, the analogy is complete (Figure 22')., The wun-
applicability of Figure 22 under the certain conditions discussed above is

reflected in the failure of Figure 24 under corresponding cenditions; i.e,, *
there exists a critical angle of ra?hctim (and hence of incidence) for & ,éinn o
strength shock. Beyond these crit-iéll‘ conditions we expect from the mloy }‘

that a aigml propagates back tron the reflected aho@k into the region het'«u
the shocks and causes a fusien of tho inefdent and reflected shocks at-lrtiu
in the neighborhood of P. : 4 ‘ . ~

This analogy therefore, shows that the roflect.ed shock must be exptcta:d
to overtake the incident shock wheneyer © > @,. This process of overtaking
originates at the wall and gradually spreads into the volume of the gas. As
it spreads the two shocks merge and form a singlo shock for a certain distanco
from the wall, beyond which they are separat.e. In the case of irregular
reflection, then the two shoeks will no longer look like a V but like a Y
standing on the wall. (See Pigures 25a and b.) .

In Mach reflection it is as if reflection were no longer caused directly
by the wall but rather by & cushion of air mung on the wall. MNow that this
species of irregular reflection really occurs, it is a seventy ym old axpcri—- :
mental observation of mnatqnch(ﬂ, after whom 1t was named. It has been

7 ' - — -
Paper of E. Mach with various collaborators appeared in thl Vienm Am "
"Sitzungsberichte™ Vol, 72 to 92 (1875-1889), cf. in plrtakculnr LT
Vol. 78 (1878) page 819.

-
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Figure 26,a,b.

25a Regular »eflection
25b MNach xjeflection
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explored in great detail by hydrodynamical resesrch done during this war.(6)

~

(o)
J. von Neumana, "Oblique Reflection of Shecks®, Bureau of Ordmance E.R.R.
No. 12 (1943). \

H. Polachek and R. J. Sesger, "Interaction of Shock Waves in Waterlike
Substances", Buresu of Ordnance E.R.B. No. 14 (1944).

P. C. Keenan and R, J. m“r, ‘m:"h of Data on Mk Inm”aum'
Progrua Repcet No. 17, Bu‘un of Ordnance E.R.R. No. 15 (1944)

H. Polachek and R. J. Seeger, NavOrd No. 88-46, *Analysis of Deta m' wx‘
Shock Intersections,’ Progress aoport No, 2* (1946) .

NavOrd Report No. Ti~kb, 'l bt cal conforcnm on Gpttal lemum &n
Superamic Elw“ (19145) p (Widentiql).

1incoln G. Snith{ “Photmphie Inwst. ntion of the Rerlocum of Pl&m
Shocks in Air® (19&5) (Fina) Report) osm: Ropnrt. No, 6271.

' o i

The quslitatin picture of Mach rcfli«cﬁon is quite simple for the cu-

‘of a plane shock incident on a wall, Htm ﬁ;e incident shock makes a eoaathnt.

angle with the wall, The situation is more oonplielt.ed 1n the cage of blut
produced by a bomb. Piret of all,-the angle of incidence changes as the blast
wave proceeds cutward from the bomb. 1In addition, the sphericity of the blast
wave makes a quantitative difference where uach reflection occurs, while it

introduces no additional features in the cass of regular refloction. Tis iu

so because regular reflection takes place entirely in the’ neighborhood or a

single point of the wall and, therefore, only local conditions at that point.
ent.or. The definable size Y type reflectim, on the other hand, extends over

a finite area and grows up ‘on thq shock. Therefore, the properties qf miihcek

in the large area now bocone relevant. As iu:licated earlicr, the nruma
shock merges with a cmtmumuly incrouing tractim of thn incident uhoet, ¢nd
eventually the incident and reflected shock may even coincide completely. ,‘l&ogt
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of the thecretical and experimental work on the phenoamenon, bﬁt not all of it,
was done in the case which is somewhat simpler; i.e., a plame wave incident

on a plane wall, It is found that, in general, the dimensions of the Y in

this case are not constant, but that they grow with time. In other words, while
the regular reflection, which produces a V, is stationary, that is, the V never
changes, this new kind of reflection is not stationary, i"", the Y grows as

time goes on. Of céurse one must admit that the Y contains a length, and hence

& size can be attributed to it, in a manner which is nct possible for the V..

The lbngth associated with the Y igﬂth’o hhgth of tho stem; the V has no stem
and definable size. Since all expfrimﬁntat.im, as well as theoretical consider-
ations, show that in the plane case the stem of the Y grows propertionally in
time, the.-Mach effect must have a well defined beginning. The length of the Y
stem at any moment defines the duration which the phenomenon must have had from
the time of its inceptivn to the time of observatiem, |

10,2-9 Difficulties with Irr ar Reflection

Aa‘ was shown at a certain obliquity 6,, regular reflection ceases. All
forms of reflection occurring after this, i.e. for ¢ >,°§' are by definition,
irregular. It is believed that irregular reflection at its very inception, i.e.
for the ¢ immediately following G, , belongs to the type described above as Mach
reflection, although if one goes into the minutiae, there is an interval of a
few degrees where one might conceivakly have doubts. These douhts as to the

nature of early irregular reflection are based on experiments by L P+ Smit.h.\”)

[6)) | ) I
Lincoln G. Smith, ®Photographic Investigation of the Reflection of Plain
Shocks in Air*  (1945) (Final Report) OSRD Report No. 6271.

We would expect that the small angle between the trajectory of the triple peint
and the wall should be zero exactly where regular reflection ceases., According
to Smith's experiments the triple point is not visible for about 2° after
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 regular reflectien ceases. If the angle bstwsen the triple point trajectory

: And the wall is measured in the region o: 29 to 15° past the critical angle of
incidence and then ?xf;ra‘polate back to gzero, it hits zero at about 1° from the
¢xtreme angle. Whether this effect is real we cann;:t. be certain as yet. It

" mey be that a higher resolation will settle this point.

C A further complication is caused by the fact that the reflection phenomena
k nﬁgat necessarily have a beginning at a definite point, where the shock first
‘meets the oblique wall, This point is clearly a carner which can belong to

any one of several types. Figures 26a, b, and ¢ are some examples of such

. corners. (It will be noted that 206b and c represent alternatives, which are

géuvalent since viscosity and wall friction are disregarded.) Both theory and
i experiment show that this corner must be the source of a disturbance behind the
; ‘reflictod shock R. Saith's schlieren photognphq indicated that this disturbance

# always a rarefsction wave. This rarefaction's edge shows up as a curved wave
R jperminating (on the back side) the fpomogensous region between R and the
wall, It ukoa contact with B at S and beyend S it has "eatan into®" R, and
theroby repllcod the straight shock R by & weaker curved shock R¥. It will be
naué that RY deu not catch up with R along the wall, This is so because the
qbove mentioned homogeneous flow immediately behind R is supersonic, and R! is
i ‘4. .rerefaction, and henca precisely sonic. See ?ligure 217,
‘ , As t.he obliguity of I, © , increases, the flow behind R becomes increasingly
noarl,y sonic, and correspondingly R' moves close to R, and 38! clese to the wall,
Consequently the straight piece R shortens. At a certain angle Oy the flow
becomes mctly_ sonic, S reaches the wall and the entire reflected shock becomes
curved, 1.0, R* replaces R in its entirety. Thus ., has been computed, it
lies very close to G; but it is definitely less. (O - Q, varies with the
shock strength, in air it is never more than about .6°.) From the point of

viem of the empirical evidence one cannot even be quite certain, whether the
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Figure 26,a,b,c

26b Obtuse angle obstacle
26c Acute angle cbstacle
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Figure 27
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| regular reflection still exists beyond &, , i.e. whether it ceases at @; or
at Oy . . ‘ |

In the plane cases studied, it was found both theoretically and experi-
mentally that the shock configuration‘remaing similar to itself in time, i.e.
it can be described in terms of two variables, r/t, and @ , where r and O are
polar éoordinates’with the origin at the corner, and t is the time of travel of
the incident shock from the corner to the position givem by r , @ ., We repeat,
the configuration remains similar to itself as it proceeds, the triple point
travelling a linear path (Figure 28).

In the region of regular reflection it is clear that the angle of the -
triple point trajectory is 0°. We know'fésm Smith's results that with the onu;t
of irregular reflection the angle 50 miide by the trajectory with the plane
surface (Figure 29) is small but becomes greater as the critical angle is
exceeded by larger amognts. Actually, it is very small for & considerable
angular interval, For overpressures of about 1/4 atmosphere, the range in which
the most detajled observations are available, the Mach effect bOgins when the
angle between shock and wall is 56°. Even at 66° incidence the angle of the
triple péint trajectary with the wall is only 1 or 2°, |

" In the case of a spherical wave, there is no qﬁ;stien of edg; effects but |
additional complications arise from the fact that the angle of incidence changes
and the shock weakens as it proceeds outward from the center. The increase in
the angle of incidence of the expanding spherical shock is, therefore, expected
to be accompanied by an increase in the rate of rise of the triple point, as
slready indicated in Pigure li. The rise of the stem of the ¥ takes place in
a Aanner for which there is a good qmlitatifo‘ MMiptim. Ralverson and Taub
have made &xtensivc studies of the experimental dats ‘on the Mach effect for

aphericél maves. Despite the lack of a satisfactory theory, the use of available

4
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- Migure 28
Linear travel of triple point
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'Figux‘e 29

Angle made by triple point trajectory with plane surface
(@) versus angle of ineidisibe () of ‘phane shook

(Data from L.G. Smith NDRC A-350)
Overpressure in incident shock = 1/4 atmosphere

n = 3,7 ped
14.7-05-7
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‘:ptﬂnnt.al data togctlur uit-h the M sc&ling 1aw enables us to predict the
um features of the behtvi fAe!' 8 reflected spherical blast wave,

"Retarning again f.o t.hé "caac of a 'plam wave, we note t.fat. certain diffi-
cultioﬁ appear in the study of irmgalar reflection as the angle of incidence
.uppronéhoa 90°, Ae the aagla of inci&onco gets close to 90° the appearance of
the'retlcetion changea -coitidngbly. Specifically, the contribution of the
i ﬂfiocted shock begins to become less and less, and in the neighborhood of the
dt.rip?:le point, the back brench of the Y, i.e, the reflected shock, gets weaker
S0 and i-eaker. In other words, . situation develops where it gets progressively
nox-d ditticult o t.OJ.l the rmard branch of the upper part of the Y from its

: ';_ st.em and to obmrva tho backward branch of the upper part of the Y,

'If one is eonplet.ol,r phlnonenologicll » if one talkes only about what one

a g
sees and not what one expects theoretically, then one must admit that in the
. Mach effect, after 80° the back side of & T bas not been cbserved. It looks
a.a though the incident nhoek unphr aakes & turn and gets deflected away from
o zhe wall without the benefit of the reflected shock. Further, from the triple

-,

S point the reflected shock is observable but it does not reach the other shocks

tce form a Y. This may be so, not becguse it is absent in this region, but%’
‘*"buemsc it gets too weak to be observed with the experimental technique employed,
e _,,}Hdueter » we really do not know whether la_te reflection is of the Mach type or
::.‘has some other form.
In any case, this late form of irregular reflection is the one which
§ -corfnpanda for the spherical wave produced by the bomb to the double point
‘charge, and which, in the end, yields a pressure increase by a factor of 21/3
or 21/2, depending on the pressure distance curve in the region of interest,
¥ This concludes our qdaliﬁtive deseription of the reflection of plane and

spherical shock waves from a rigid plane surface.
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We now proceed to 8 more detailed discussion of the present status of
the theery of regular and Mach reflection. We will refer frequently to

experimental results.

1C.3 THECRY OF REPLECTION

In this section we treat in some analytical detail certain relevant topics
in the theory of reflection, some‘of which have been mentioned in the general
discussicn of Section 10.2; We assume siep shocks in non-viscous gases
throughout, although such stringent restrictions are not necessary to all ensuing
discussion, First, we discuss the one dimensional case: a step shock normally
incident on a wall, and the phenomenon of ﬁcatchup" which occurs when the
positive pressure region of two shocks overlap. Next, we consider questions
related to the regular reflection of a plane shock such“ss the pressuro‘multi-

plication as & function of the angle of incidence and shock strength, and the

. eritical angle beyond which a two-sheck solution no longer exists. Finally,

there is a discussion of the irregular reflection of a plane wave and attendant
difficulties,

10,3-1 Shocks in 0n§*D;g§ns1on

| ﬁb will first consider a single plane shock, starting with the classical
Rankine~-Hugoniot toraulae.(8) Consider such a shock 3 (Figure 30). It separates

1
- .

- . ¥
For a derivation of these formulae, ses Vol. XIII, Chapter 3 on Shock
Waves, by K. Fuchs.

two domaiﬁbjno and M, in which the physical characteristics of the substance
mressure and specific volume have the values p,, v,, and‘p, v, respectively.
The corresponding scand velocities are c, and ¢, respectively. It is helpful
to tie tg: frame of reference to the shock froﬁt S. Then the substance of M,

flows 1n€6‘the shock with the shock velocity Ve, while the substance W flows
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out of it with 1'.he"velocit.y V. The shock S thus causes a’ decrease in nlocit.j.
U= VQ -V

' oo
and its compression ratio is } T VP.
The formulse of Rankine and Hugoniot express the conservation of mass,
momentum and energy. The first part of this systeam correlates the inner

properties of the substance on both sides of the sheck, i.e. p,, v, 8nd p, v:

E"EO: “’%(P"’Po)(fo"‘a A 1)

Where E is the energy density of the substance in the state M, and E; is the
energy density in the state M, : #

E<E(pyv) » Eo= Eo(p s %) @

The second pert of the zystem expresses the velocities V. ,V,U 1in
‘tarms of pg, ¥, and p, ¥1 ’ ' S

Ve Vs, s TNER s tme stamnorm-v) 0 O)

and hence the difference in material velocity, relative to the shock front 4s

UsV,=V = + Y (u-v)p-po) - (&)
Equations (1), (3) and (4) imply that

£> [;4.e. F}h implies »< v, and ~,-\/:>V) O) (5)
In Figure 25 this implies a shock "facing” right.

[ ¥<lite. p<p,  implies V), and V<V,<O (6)
In FPigure 25 this implies a shock "facing" left
Far p-— p, the shock becomes a sound wave., (1) shows that in this limit

s
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dE 2E
P~ =35 - On the other hand since P=3%  (identically)at coustant entropy,

an infinitesimal shock leaves the entropy asymptotically constant, Now (3)
glves V~V~Vv? ‘V—‘—-F-—T ; with constant ent.x"opy, i.e, adiabatically the
shock velocity becomes sound velocity. Therefore, with respect to an infin’ibe- |
simally weak shock the flow on both sides becomes asymptotically sonic,

For a shock of finite strength the following rule is generally valid:
(A) The shock velocity is supersonic with respect to the lower pressure side
and subsonic with respect to the high pressure side.

For (5) these two sides ar¢ M,, M, respectively. For (6) they are M, ilo,

respectively. So we have: o
© E>|  implies IV.PC' MAARY- 4]
§<|  implies |Vi] < Ca , |Vi|>cC (8)

This rule can be demonstrated quite readily for an ideal gas but it is

also generelly valid for any substance with a p, v characteristic that is concave

oA

upward. (9

(9)
"H. A, Bethe, "The Theory of Shock Waves for an Arbitrary Equation of

State,” OSRD Report No. 545.

Consider a shock moving to the right. Restating (3) and (5)

V/v V—T

C = \’ —-QTE-) | C - _Q.E’%) b
oA cons tant ? ® 1 2'Adconstant
entropy . entropy

- But

For an ideal) gas the adiabatic law and trge equation of state, and the

internal energy density are respectively

(a) Pv-‘: constant , (b) .FV‘pT ’ (c)E:-'?;l" (9)
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s° c ¥ ‘Pv > C° = ‘P‘Iﬁg , (‘Y
What we.wish to prove is that
c >V »c, | (20)
Substituting the expressioms forV,,C,C, , this inequality becomes

' Vgpv! ) V.V:E?fg > Vzrp.u',

or
e L ’TS%Z; > ¥ where §: P/P, (11)

‘ An Mditimal relation between "71;0 R 5 and ¥ is required so that the
eorricmosa of this inequality can be demonstrated. Substituting (9¢) into (1)
we obtain '

‘ v . (eNE+(¥4)

——

v, ~ (s+)E+ (8-1) T , (12)

Combining (11) and (12) and simplifying we get in each case the same inequality,
.

<

namely
S
§ (13)

This condition %> | was already required by the encfgy density condition (9c¢).
This ;;r_ofna the atatement (A) for an ideal gan.
;0,2‘—2 Shock Catchup

Having demonstrated (10) we are now 1n'a position to show under what
conditions two successive shocks will merge, Consider two 3t§p shocks (Figure 31).
By (10) shock I is supersonic with respect to undisturbed medium & , and is
subsonic with respect to the once-shocked medium (1), i.e. C,>V,>C,
Similarly, shock II is supersonic with respect to once-shocked medium (1) and
subsonic with respect to twice-shocked medium (2) i.e. C; >V;‘> ¢y

. i [
Combining these two statements '\/a 2 ¢, >V; or VQ >V,
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Figure 31
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‘and Shock II will overtake Shock I. This is true as long as %ﬁ) | and hence

t

- clt.chup{ will cofuinly occur whenever the positive phases of two shock waves

overlap} (Figure 32).

A hore detajled investigation would show that catchup would occur even if
the second shock were in the early part of the rarefaction region of the first
ahock;' but we will not go mﬁo this question here.

10,3-3 Normal Reflection by a Rigid Wall (Ideal gas)
The Figures 33 have three domains A, B, and C which are defined in terms

of ‘the nrumber of timés that a shock has pa.;.aed through them. The pressure,
Aspeeific volumé and sound velocity in these regions are p, v, €; pg, Vo, Coj
b";,“ v', ¢', respectively.

‘Since reflection inecreases the overmessure

PL Py P

or - g<l<s ()

“ where E:PA . g VP.

In the present setup there occur no movements parallel to the rigid wall.
Hemce the substance of the domains A and C which cannot move normally to the
wa;i} either is necessarily at rest. The substance of the domain B has therefore
the ?volocity U from Figure 33a and the velocity U' from Figure 33b. The

condition relating the strengths of Shocks 1 and R is therefore
Uu=u (14%)
Now for an ideal gts characterized by (%9a, b, c) we recall that

(g0 5+ (x40)
Vo (8+) 8 +(g-1) | (12)

Solﬁ.ng,v for U, U' from (2) and (4) we find that

U, 251 (150)
C. V¥l(s+e g+ (8-
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Figure 32
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Figure 38 a,b
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ILOANR % ¢ .10 N
Co Vz/r[(nz)g-r(ud)‘]‘

The minus sign in (15b) sppears because of the opposite directions of travel

(15b)

of the incident and reflected shocks. Equating (15a) and (15b) as required
by (14) and solving for ‘5" in terms of 13

(r-) = (6% B - P (16)
TEOYEITN » 3 7o, 0 “5 %, |
conssquently O0< §<| corresponds to ]< £ < %:“"

For air (at moderate temperatures and densities) ¥ = 1.4 and % =8, These
results deserve a brief discussion because they cantain the first qmutativc
indications about the “momtic' effects in shock reflection' t.ha;b is, the

PR T

deviations which ahocka of finite strength present from "acoust.ic" laws. which

. hold asymptotically for shocks of infinitesimal strength.

From (16) we infer easily that
1-5<s-1 , el an

This means (as was stated without proof in a previous part of-’t.his chapter) that

P <P-b s B4 BA, a8)

o

The reflected shock is stronger than the incident shock if strength is measured
by the absolute compression (pressure difference), but it is loaker if the
strength is measured by the relative compression fpressure ratio).

In the limit of infinitesimal shocks, the acoustic limit (16) can be
manipulated to show that.h-)é'vp'-p,,%no}f: i.e. that both absolute and relative
criteria give the same result in the acoustic limit.

' Thus the “unacoustic"” theory is so far just a plausible extension of the
acoustic theory with liitle individuality 6f its own., We shall see how radically

" this changes when oblique reflaection is considered.

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE
i~ oy

10.3-4 Regular Cb Reflection
We will now consider the case of the oblique reflection of & shock of
finite strength (Pigure 34).

A single plane shock wave, I, i# incident on the wall, the included angle

~being o, It produces a secondary shock wave, the reflected wave, R, which

includes the angle «' with the wall. We will derive relationships between
the strength of 1 (measured by its compression ratio), the value of « , the
strength of R and the valuw of o .

The shock waves I and R &nd the wall define three domains in the subptance:
the unshocked material ahead . of I; the once shocked material between I and R;
the tw;lce shocked material behind R. We denote these domains by A, B, C,
respectively. - | |

The ordinary frame of reference has the unshocked material A at rest,
while the waves I and R move with shock veTocities U and U' reaspectively normal
td themselves. A more advantageous frame of reference is one which is tied to
the reflection point, P, where I, R and the wall meet. Here the substance A
comes in with a velocity & , parallel to the wall, while the substance D ,
leaves with a veloéity_z' » parallel to the wall. From this point of view, the
first shock causes flow which is initially parallel to the wall to be deflected

toward the wall and the second shock renders this oblique flow again parallel.
»

| In this frame of reference, the shocks I and R and the reflection point P are

at rest,

Clearly the pressures in the three regions increase with the number of
times the regions received a compressive shock, so that p< b, ¢ p’ where

P’P"P' are‘tho pressures in regions A, B, and C respectively. Or:

3<l<§' " (19)
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_Figure 34
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n
The velocity components in A & C,units of the sound velocity in B,

normal toIanﬁBz are ,zl sino. = T , 'z" sin o = t’ l.e.

. ,
Iz' = tinw ’ 'Z', = Tgin o - (20)

In our present units I, R modify the velocities of the substance which

crbsea them by the amouxits ,

\U Ju'l
- R — d AR ——_
W = Co and &.}" 3

respectively.
If we denote the components of the nrboit.y X 4n Bby x and y and then
calculate these compmonta by passing S.nt.o ﬁ through I and thnn through R,
we obtain: &

>
Through I: Xe oo twsnel Y= —ur Cos ol

Trough R: X =

T . '
I {*u‘-gmu.' y Y= ' woa!

Combining thess relations

Trosinte . Trulsed (21)
Sm ot Som o0
_ - ’ o
W Coe ol of Ccoo ol (22)
where by (15) for an ideal gas
U2z LU a(E=1) )
weT. V2 ez §+0x- ;)‘_} W Co T \JZE[OHD) T4 (x- 1) (23)
and fﬁm (3) and (12) for an ideal gas
‘t_v fr-) &+ (x+1)
®C. Vz.v[(:+:)§+(s -0
(24)

T's V. g ()

N

o e[t g+ (x-0T

A more convenient form of (21) is obtained if we introduce a new variable ¢
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where o~ = s +T i.e, by the definitions and by (3) o =m T

R Sl 4 . ol w'ente
Shm. ot - Siﬂ'l. d.‘ ) (21')

where for an ideal gas

O_;V(x+t)§+(v-l)ﬁ s O‘;:\[”“) §'*(X")' | (25)

A 1 Y

Equations (21') and (22) in conjunction with (23) and (24) relate the
shock strengths S s g' » to the angles of incidence and reflection o¢ , o'
so that given s s ol , the quantities 3' s ok'! can be obtained..

Elinim;it.ing},u from (21') and (22)., uaing (23) we find an expression for
' in terms of 0 and oC .
| (x+1) ot o {z (w+1) 0%+ a4 LE LT ) P +a—"f(x» o¥y z]lotnaa.} cr'?

+ [ (es)?o?= 4 (e )t + [(w)r’»,z]‘d#d}zo (26)

The condition (22) in conjunction with (25) yields the relation for o ' in
terms of ¢', 0 and o .

Yo -o

i
cow o' = s
Yo' - !

col o (27)

There are, in general, two sclutions for S‘, o' given g s o 3 one has
greater values for §'s> o', the other lower values for ¢ ', 2. For eaah
value of the shock strength ¥ , however, there is a maximum value 61‘ £ (i.e.
K oxe. ) &t which these two solutions coalesce and beyond which there is no two
shock solutions of the type predicated. For roaaon§ cited in Secticn 10.2,
the less.sbeep solution is the one considered physically admissible.

- We will now discuss briefly the question of the existence of two solutions
and the coalescence of these twe solutions a; the critical angle of ‘incidence

oCext. 18 approached. Rewriting (26)

x*~-Bx+C=0 | | (28)
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X~ 12
(8+1) %' + (x - " ' |
where: o= ¥ : >l 5o
S 1O IO B of (2910t § S
B ‘l+(r,—;,3t;; C“"+f‘[ (¥+1) ) ot
(i | [oedote2)? s
<-4 cout *“‘["""’"""‘] oo
¢=l ey T T e
e (‘?)‘S*Qr-f)' s | r)V%I 2
~x-a-"’;'-°~{w('~i?)ﬁ} o .
- 2i2(1-3 - (29)

Now if ﬁ § ' ;3 £ two solutione c:tis,ti (oorrcaiéo!xda_ to regular retiection).

one solution exists (cerresponds to ceritical angle),
> no real solution cx‘ist.s (30)

These three conditicns can be met., To see this, since C and B are continuous
functions, we need only show that the & conditions are met at least at two
pointas. | : ' '

At o =90° B=1,C=1, so t.hatgg> 1and for

o gt [(8700T4 1] X et L
HC ~ 4 '
so that BL ((‘-l)q-k*z)]_ bt o < ‘
B (¥ +1)

-and the three criteria (30) can be met .,

Using the values of o' and the assumed value of o and o we can find
the corresponding values of « by means of (27).
*,,. oObtained from = in (30) is given by the following equation

TR M Cac 1)433— {os(a’ﬂ)"{x o>+ )E™ I)‘-r 16t (0"“-04-8 a’(q'*-—t)"[(u-:)cr.% 2.]} '3"
- { TN l)[( 1) 2};— [(N)'T 1*2]4*'3‘ (e* ’)L{(i_r-l) o +2]} 4

- {(64) T+ 2}* =0

(31)
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where sin2
y= oLext

These equations have been investigated in numerical detail by H. Polachek

(10)

end R. J. Seeéer. Some of . their results are embodied in Secticn 10.2,

{10)
Regular Reflecticn of Shocks in Ideal Cases (AM-524) Feb, 12, 1944.

Figures 20 and 21.
It is of interest to see how the critical angle approaches 90° as the

shock becomes sonic.

and by (25) ¢*- :~-‘%;?L¢3 « Inserting in (31) and neglecting
terms in A |
Yomomrmn olegy =!--g"7é- or
. 90-o,,, =\Zh&

The critical angle converges to 90° as the shock overpressure approaches
zero, the approach to 90° varying as the square root of the shock overpressure,

10,35 Mach Reflecticn

Let us now turn to the case in which regular reflection ceases to be
possible.

When ol increases beyond 0L gy.. We wish to investigate the case in which
reénlar reflection continues as long as it is possible, i.e., up to L= Ly
and we shall try to determine what happens beyond this point.

That regular reflection is impossible, means that the oblique flow in
region B (Figure 34) cannot be deflected by a standing obliqupbshock R so that
it becomes parallel to the wall. This corresportls to the propagation of signals
from the shock R, back against the flow X into the region B, a fact well

e

substantiated by the experimentally observed fusicn of the incident and reflected
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shoék's Iand R (¢ £. Section 10.2). Another way of desor,;ihiné the criﬂcal angle
-is to say that it is the greatest angie at which the ant.aot U 'amd U
orthogonally to the wall can be made equal, i.e. e ‘
o Q' cos x,;' - Uéoﬁ& , (32')
Beyond this a@o, the compensation of the normal caﬁpénmta of the floi. :
velocity is no longer possible by such a simple, stationary préc"u. The
phenomenoa of irregular reflection wh.;uch is thus prodvuced will not be stationary -

. even in the frame of reference in which P (and I) is at rest, The wave of

impact of X on the wall will propagate from P in all directions and thus change
in "gsize" at all times and never reach a final equilibrium state. However,
while the shoeck configuration shows a continucus change in size, its shape will‘
be permanent (cf. the comments connected with Figure 28 in Section 10.2), Its
size_ is proportig»nal to the time t that has lapsed since its formatiocn: For

t = O it bégins concentrated into a single point.

Since the shocks R and X are advanging into two different media A and B,

a discontinuous change of direction of the RM front must be expected at T,(Figure 85),

That is, T is really the contact point far thfee different shocks - I, R, M.
The point p, is the so-called "c‘enior of similitude” frw which the phenomenon
originates (f.ho Ycorner" in the sense oﬁm discussion in Section 10.2‘).

Now conaider a frame of roforémo' in which I and T are at rest (Figure 36).
The flow 2 % of the substance in A crosses the shock syetem I, R, M, to
f}qﬂll,y reach the domain C. However , this process operates in two different
wa}s even in bttn immediate neighborhood of T: the substance in A above the
line £{ crosses into C through two shocks I snd R; while-the substance in A
below L} crosses into C through one shock M. Since we assume no shocks beyond
R, ¥ (in C), both processes must compress the substance to the same pressure.
But this compression occurs in the "upper" half in two stages (I, R) snd in
the "lower” half in one (M). The former process is less irreversible than the

latter - essentially because it is less abrupt. Hence the substance which

1
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Figure 3§
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crossed "above® T may be expected to have .ﬁ lomr entropy than that which
crossed below® T. Thus we have in C near T two flows: both with same pressure,
bat the "upper”. flow has lower entropy. 3ince the two flows have the same |
rressure, but the "upper® flow has the lower entropy, therefore it mast also
have the lower t.cmpera{ure » i.e. inner energy, and the higher density. Again,
since it has the 'lmr inner energy, it follows from Bernouilli's principle

that it mast have (in this frame of reference) higher kinetic energy, i.e.
velocity. Therefore these two flows must be gliding put. each other along a
dividing line D issuing from T. So D is a alipstrm, and also a discontinuity-
line for entropy, temperature Mwamaity, but not for pressure. We therefore
have a ptturn cau.tatm of romf

';:,lucontimniby hnos I, R, M, D, all confluent
in T: the three shocks I, R, M, d the slipstreu D (Pigm 3. '
That D is a alipstnan and mﬂ. a am is indic&tcd by the experimentally
observed large aqu.oq tpomm M And D lnd tbl mn.irtnnt that the flow into &
shock be :npqscm:le tit.h !'npoct w the ndinn into whi_ch the lhock travels
(ef. rule A). ‘The ﬁu is subscuic behiud M and it 18 ineanccivable that it
can become rapid anough before reaching D tm ita component. across D should be |
supersonic. ‘ ‘ :
Since th; sxistence of the ixt;‘a? ohbck,li, and the Wnnkr reflection
its presence implied was rﬁt rcoé'g.ni':‘ed: ﬁy Mach, it seems appropriate to give
his name to this type reflection. We sl}a\iilvtlirotore degignate irregular
reflection acg,ordfl.ng to ‘uvxo; scheme of Figure 37 as lach reflection,
10.3-6 Thres Shock Selations

On the basis of the above it would seem indicated that a theoretical

Mstmuon of lueh L'N‘nect.ion should be Murttkon. For regular reflection

" Flgure 34 provided th§ basis for theoretical discussion. For Mach reflection
| Figure 37 mey seen to provide the basis in the same sense, and therefore we
have to ses what msibi‘lities of a thecretical treatmsnt it offers.
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The theoretical treatment of ;qular ri?lcction ias greatly simplified
by the fact that conditions in Qaah éne of tho Ghreo dolatnﬁ A, B, C of
Figure 34 were constant. We nesded enly to discuss the purely algebraical
connections between them by applying the Rankine-Hugoniot cnnditiom to the
straight shocks I,R, which separate them,

In Figure 37, conditions in the dommin C, are cgrt31n1§ not constant and
the shock R 18 certainly curved.

.‘Probably the same is érue for the domain Cys the ahocklu and the slip-
stream D. Thus we must resort to the differential equations éf'compressible
fluid dynamics, aggravated by the appearance of curied sho¢ks, which introduce
varying amounts of irreversibility. _ v

It would, however, be pointless to attack these difficult partial differen-
~tial equations, withowt having first aacortéiﬁed the natnré of the conditions
', at the boundaries of the areas in which they apply. These areas are Cy and. Cge
The banndarica are the lines R, M, D, and the point T at which they all meet
is one of particular 1nteroat.
The Rankinemﬂugoniot conditions take care of the situation along R and M. °
For the slipstream D we must require that it be a streamline in C, as well as
in Qé'and that at each point the pressure on its C,, side be the same as on its
cz gide, but we must also reconcile all these requirements at the point T,
where R, M, D meet., Therefore a discussion of the conditions at’T is a %
necessary preliminary of any theoretical treatment of Figure 37.
The discussion of conditions in the immediate neighborhood of T is best
- done in the frame of reference where T (and I) is at rest, This is the scheme
‘ 0£ Figure 37 exccpt that we may replace the lines I, R, H, B by their tangents
&t T~ i.e, we may assume them to be ttraight (FPigure 38).
,,,,,,, . The following resarks are now in arder;

| (1) The welocity vector: % of tbe incoming flow in A is determined
' by the strength of the incident shock I and the orientations of I and the wall.
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Figure 38
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Indeed, the former determines the velocity of the flow normal to I on the 4
side. We know that Z# has the direction of ll , and so the statement abou£ the
normal component amounts to ’zil sim,(A[U ’ IJ ):Vcompleting't.he determination
of Z¥%,

(2) | The four discontinuity lines I, R, M, D divide the field into
four sectors A, B, Cy, Cp + Assuming continuity within each one of these
sections, we may even treat them*as domains of const..an,t corditions, since we
are investigating an immediate (infinitesimal) neighborhood of T only. Thus
we have a situation in which straight shocks delimit domains of constant
conditians. The resulting problem is therefore again only one of applying the
Rankine-ﬂugoniot conditions (and those of a 3lipstream), involving no
differential equations.

Considering the ﬁ‘nportanec of this conclusion, it is essential to re-

emphasize the assumption on which it is baud; continuity in each section

A, B, Gy, ¢ at T. Let us see uhat't.ho mi@'of this a-,e:lsumption is.

The main reasen is thé experimentally established aspect of Figure 37
which shows the lines I, R, M, D, and no others, Hence there are certainly
no lines of discontinuity across either sector A, B, Cy, Cg . Howsver, this is
not the only possible type of discontinuity. Thus & supersonic flow around s
convex corner "turns® in a manner, where the state at each point is a function
of the direction from the corner to that point. 1In this way there is a dis-
cantinuity at the carner, but nowhere else, This Meyer discontinuity or
angular discontinuity was discovered by prandtl(11) and Moyer(lz).

65 | ~
Phys. Zeitschrift, Bd.'8, p. 23 (1907).

(12) . |
Forschangsarbeiten auf dem Gebiete des Ingenieurwesens, V.D.I. Heft 62
(1908).
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There are reasons which make the appearance of an angular discontinuity
under the conditions prevailing at T not at all improbable. Without diséuss@ng
them, we point out this: the angular discontinuity is unlikely in the sector
Gybecause jhe flow there is in many cases subsonic(l>), It is unltkely ia 4,

(13)
cf. discussion of Prandtl-Meyer angular discontinuity in article by
Taylor and MacColl, previously cited (footnote 4).

because A is ahead of the incident shock I, which is the "signal" of the

approaching disturban¢e, and therefore A ought to be entirely undisturbed.

LS 3 )

¢ It is unlikely in B, beémuse B (while behind I) is ahead of the reflected shock

) R, which is the "signal® of I having run 1hto an obstacle, and therefore B
ought to be unaffected by any reflection phenomena. Hence the angni;r dis-
continuity, if there is one at all, ahoﬁld be in C,. |

We shall point out that tha'assumption of continuity at T is in mBny cases
untenable, because the conclusion conflicts with experience. We shall point
out further that an angular rarefaction in C; does not appear to be able to
resclve the difficulty. It may be, that there is one in B, i.e. that R is not
the "first aignai' of reflection. (In some, but not in all cases even A and C,
may be questioned.) Alternatively, existing theory does not allow us to rule
out entirely the possibility of point-discontinuities at T which are not angular
discontinuities. The situation is obscure., However, in order to understand
‘the situation and its difficulties, we must first follow up the assumption of
continuity at T, following the scheme pictured in Figure 38,

The general procedure to be followed would be this: Kﬁowing the strength
of the incident shock I and the orientations of all five lines I, R, M, D and
{1 5 we can follow Figures 37’and 38 and apply the conditions of Hankihe-Hugoniot
and those of a slipstream. The former determine by themselves the situation in

P

Cy, &nd in C ., on both sides of D, The slipstream condition then requires

/

g0 1
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that the substance velocity on both sides of D must be parallel to  and that
the pressure must be the same on both sides of D. Thus we obtain three equations.

If the orisntation of £ £ is unknown, we can eliminate it, and still have
two equations. If the strength of I is unknown (but the "Qndiaturbed" state in
A - p,v, but not the velocity Z* - is known), we can eliminate it, too, and
still have one equation.

We call the scoluticne for the immediate neighborhood of T -~ according to
Figure 38, and with the assumption of continuity - the three shock solutions.

Thus measurements made on a shadow photograph of the type of Figure 32
provide data which can be fitted to a three-shock solution only if they fulfill
one equation, If the strength of the incident shock 1 is known, they must even
fulfill two equations. Thus a determination of all three-shock solutions allows
for a direct empirical verificatibn.

The best specific instance for such a determination is that one of air at

h(moderate pressures (1 to 5 atmospheres), i.e, of an ideal gas ’;th € = 1.4,

Actually the algebra of this case is rather cumbersome, but a numerical approach
is practicable. A numerical survey of three-shock solutions was obtained by

Se C!undraaekha:r(M) s K. Friedrichs(15), and H. Polachek and @,d. Seeger(16).

(14)
S. Chandrasekhar "On the Conditions for the Existence of Three Shock
Waves", Ballistic Research Laboratory, Aberdeen, Report No. 367 (1943).

(15)
K. Friedrichs, "Remarks én the Mach Effect", Div. 8 and Applied Math.
Panel, NDRC (1943).

(16)
H. Polachek and R, J. Seeger: Reg. Reflect. of Shocks in Ideal Gases
AM-521 (1944) .

P

-

Experiments show disdgreements with three-shock solutions,
Thus a conflict between theory and experiment exists at the point T which

seems to justify owr dropping the assumption of continuity.
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In dropping the assumption of continuity we mast try to introduce point
discontinuities at T. As pointed out lan angular rarefaction in C, would seem
to be the most natqral solution, but preliminary investigations indicate that
this device produces no solution - not even for a weak shock in an ideal gas.

Thus far we have been discussing an inf‘init.eaimal region of the shock
ccnfigurat/ion due to the reflection of a plane shock from a plane surface in
the range of irregular reflection. This was a discussion of the boundary
cornditions designed to indicate t.h? direction the solution of the partial
differential equation of compreaaii;le fluid flow would take. The essential
result is that the nature of the boundarj conditions is not yet understood.

Our real interest, however, is not, except in an exploratory sense in the
case of an irregularly reflected plane wave but in the irregular reflection of
a spherical wave., The discussion for a regular reflection is equally v:llid in
both cases. The theory of the irregular reflection phenomenon is even less
understood in this more complicated spherical case. We. are therefore forced
in oug present state of knowledge to rely on certain qualitative notions about
the Mach effect coupled with experimental informetion. The experimental observa- -
tions on the reflection of spherical blast waves from a plane surface are d:lscuaséd

L3

in the next section.

0.4 EXPERIMENTAL DETERMINATION OF THE HEIGHT OF BURST

The data on which the following discusaion is based was obtained from INT
explosions, not nuclear explosions, Therefore, inasmich as the free air pressure
distance curve aft.en taking wl/ 3 scaling into account differs in these two
classes of explosioﬁe, the results discussed below are not applicable to the
blast produced by nuclear bombs., However, it is found that in the range of
interest, i.e. 5 to 10 pounds per aquare inch overpressure a suitable value of

b

.W can be found to make the ratioc of the peak overpressure produced in the nuclear
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explosi.on to the mrpressn‘n produced in tha "oquininnt‘ ™T oxplecion nearly
unity, We will be mwmsted in pesk preazmre only. ainco this determines the
damage caused by large bm: (cf Soction m 1) For TNT explosions the free air
pressure, p {pounds per squdre mqn),-. in the range of interest is given by
(rpW)LF ~ for W pounds of INT
r = distance from explosion feet
luchar explosions as umm on m IBK have a free air pressure

dilt.o.nco dependonco which can be npw in the region 5 to 10 pounds pex
square ineh to within 7 per cent by ‘

e -
P sz 3 : (3‘)

1‘! ‘we choocc ¢ m 206, then E is the “miulmt." tonmp for the mnm m

§ to !ﬂ po\u!a per square inoh, Thorc is no equivalent tomuge in the sense that -
the proaawe—ﬂimnca curves for TNT and a nuclear explosion oan be made everywhers
identieal by the choice of an appropriate walue of snergy iQIu.ud in the fornl

of blast, With thia in mind we will now proceed to construct tables of jaeights .

of hmrat. by scaling esxpermnul dlﬁ aa the ﬁflacuon of blast waves ~du§ tp

™T msiona. The follow‘.l.at diuuuiod refers to 1 pound of TNT: hngthn and
dmtim are gmtar for an wlcaim of ¥ powmds of m hy a factor 11/ 3
- ‘ py(17) (See Mgm 39)

~

‘l’h:omriwaul data mméd by ‘Halverson is used here, OSRD Reporl: 4899,
o '!hn tender is also referred to A, H, Taub, OSRD Report 6660 * The Rffect
SRR & of Burst om the Blast from Exploaives® Confidential; 1946, and
\ m Mport 4943 "Airbunt frm Blut Bc-ba' Symposium, 1945,

In m region of regular reflection D(.B (£ oxtm). the aphericity

of uu shock tront introduces no deviations from the results cbtained for

plane wavss because of the local character of the reflection phenomsnon,
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Pigure 39
Splierigal shock reflected from rigid wall

_ | d 1a
K gxt = ‘Q [P (%-, ’.“.../_v! s given by theory of regular

reflection
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Therefore, we can use regular reflection theory and shock t.uiae experiments
to determine the dependence of Dy on the height of burst (Figure 40).

For the case of irregular reflection the situation was studiéd experi-—.
mentally. In ;;articular, the triple point was located as follows: gages
were placed at various heights (H + Y) and a fixed horizontal distance, D,
from the explosion and the differences in the time of arrival between the
direct (I) #nd reflected (R) shocks were noted. An extrapolation. of this time
to zero gave the height of 1;hea triple poi’nt for each height of b;zrst. By | .
repeating the procedure for various heights of burst and then scaling the re-
sults down to 1 pound of INT curves of Y versus h, for various values of D
were obtained (Figure 41). ﬂ

It is more convenient to have a plot of the height of bursf.‘hc as a
function of the horizontal distance from the explosion for various selected
stem heights y (Figure 42). The stem heights were so chosen that they scaled
up to 30 and 100 feet for various tonnages of TNT. |

10.4-2 Cptimum Height of Burst for Peak Pressure

Knowing the geometry of the Mach effect, the next problem is to connect
it with a choice of the heights of burst which maximize the area over which
the pressure exceeds a chosen set of values,

Suppose we are Interested in t.hé hoight of burst, hc » which m;IkGS the
peak overpressure, p, on the ground, occur at the greatest horiimtal- projected
distance, D. The procedure would be to meAsux;e p (D) for each value of h. and
then to plot D(h.) for selected values of p. Such experiments have been per-

formed using ’IN’I‘(‘IS) and the results D(h;) for selected values of p, are

(18)
Various reports of Division 2 NDRC, by A. H. Taub and ¥. T. Read.

incorporated in Figure 42. That hg, for which D = Dgax, is then the height

of burst which ylelds the greatest distance to a point on the ground for which
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Figure 40
" Theoretical limits for reg¥lar reflection versus charge height
(w =1 1b INT) (after Halverson)
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Figure 41

Stem height versus horizonm distance for a given charge height(h )
(W = 1 1b TNT) after Halverson
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Figuro 2 ~

Height of burst versus horisontal diltance for a given
sten height and owverpressurs

- % =1 1b TNT
D = horigontal projected distance (feet)
he= chargs helght (feet)

a = 1,00 £t fa= .38 £t
b= .80 g = .29
¢ = L83 h= &
d= ,48 i= ,20
e = 37 J= A8

. k= ,08
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the peak pressure has a prescribed value.(m)'mis value will, in general, be

(19) ~ _
It might be stated that a better scheme now exists than that which was
used for obtaining the pressure (on the ground) versus distance curves
for an elevated nuclear bomb. The idea is fo\first)deduce the reflection
coefficients for chesen overpressures and angles of incidence from the
measurements made on TNT and then apply these results to the free ajir
blast curve from the nuclear bomb., The main reason this was not dene in
determining the height of burst is that the IBM runs which give the free
air overpressure, distance curves for the nuclear bomb were not yet
carried out when the height of burst tables were made up.

in the region of Mach reflection. If we choose, instead, to debcr_mino'tm

height of burst by requiring that the stem of the Mach Y have a pa-eacrib;d
height, y, at a given peak pressure, then for this value of he it is, in general,
true that D < Dg,x. The advantage gained by baéing he on y is that the pressure
is increased, not only on the ground but over a vertical region coinciding

with the Mach Y as well., 1In this way, the average pressure exerted by the blast
on a structure is increased, result:i.ng in increased destruction in regions

where the pressure is marginal, The problem is soméwhat complicated by the
variation of pressure along the stem of the Y. A 15 to 25 per cent decrease

in pressure occurs in traversing the stem of the Y from the ground to -the triple
point. Because of this variation tltxe mean pressure along a chosen vertical
strip is not rigorously meximized by making the stem of the Y just tall enough
to cover it. As a working approximation, however, we will choose the height

of burst so as to achieve a desired stem hpight at a chosen peak owferpressui'e.
By using a w1/3 acale factor, Tdbles 10.4-2 (‘3)’ 10.4~2 (b) were prepared for °

various tonnages of TNT. These tables give the heights of burst necessary

_ to obtain stem heights of 30 and 100 feet at various chosen peak overpressures.

The distances at which these stem heights are obtained are also listed,
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Table 10.4-2 (o)

v

Y = 30 ft.

Height of Burst and Radius at which Stem of Mach Y = 30 ft. and

Overpressure Exceeds Gliven Values for Various Xilotons of TNT

"ij

p (pst) f w06 | W wleO | Wea2eO | WebeO| Wnlo|wazoi W o= 100
Kilotons B
20 h, (£t) ---- ———- === 1 900 1300 | 1660 | 3100
a (re) --n ——— g ——ee i; 1800 2200 | 2800 | 4800
18 hg 350 450 | 650 ' 850 | 100 | 170 | 3400
d 800 .} 1000 ; 1300 é 1800 §; 3499V: 3000 | 5200
14 h, 400 600 ¢ 80 | 1150 ; 1800 | 2000 | 3800
3 90 | 1260 | 1600/ | 2200 | 2600 | 3600 | 6200
e i ;
10 h, 550 750 | 1000 | 1460 | 2000 | 2500 § 4700
a 1260 | 1600 2100 . 28600 | 3600 | 4800 | 8000
m: - mm?wmek(;; rnggo ) 1000 1680 2100 2700 | 5000
a i 1350 | 1vppyg_;,_2zoo ;3100 4000 : 5000 | 8700
8 h, 650 00 | 1160 ; 15554*A§ 2300 2900 | 5200
a 1500 | 1900 2600 3400 . 4400 | b500 | 8300
7 h, i 700 960 Z 1260 | 1800 ! 2400 | 3100 | B850
{4 T 2100 . 270 © 370 | 4800 | 6000 | 10000
6 h, 800 1100 % 1400 f zooovﬁgggsoo ‘ 5300 '\.ssoo
d 1500 2600 # 3100 § 4200 fgsum ¢edm 11000
= K I
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lel’ 1042 (b)
Y = 100 Ft.
Height of Burst and Radius at which Stem of Mach Y = 100 ft. and

Overpressure Exceeds Given Values for Various Kilotons of TNT

E p (psi) W =06 | Wale0 :wazoogw.s.o w. 103 W =20 VI = 100
?{W_(Kilot;om) g : P ‘
18 by (18), 160 | 200 300 . 500 1 800 | 1200 2300 |
a (16) 600 800 10 1s00 ‘ 2000 2700 4900
;;14.;: k WMﬁ:‘bpc;w'ﬂmffmmigéw i ; 700 If"»"lioo e
g a | 800 1000 1400 | 10 | 2600 3300 5800
§‘m h,  So0 480 850 imoo’*imoo 1900 s700
' a . 1100 1400 1800 2600 3 8300 4300 7600
C © 1200 1500 2000 2800 3600 470 8200
th 400 s80 80 . lzoc ' 1700 230 4300
a 1300 1700 2200 | 3100 = 4000 6200 9000
TFh, 4s0 600 %0 | 1360 1500 2500 4600
d 1400 1800 2500 3400 4400 6700 10000
"&h, . s00 . 70 1000 * 1600 2000 2800 % 5200
B © 1800 | 2100 2800 3900 . 5000 6600 11500
[sn, - 850 | 8o 180 1m0 . 2300 . 3100  --s
d 1800 2600 3300 4600 = 6000 7800 ——--
4t . 60 | 800 | 1260 | 1000 | == amem e
d § 2000 } 2800 3700 5200 5 S
] N 1 i |

ore—

<m\,
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K=Yg
"10.5 CONCLUSION: THE HEIGHT GF BURST

In this concluding section we will bring the .‘wi»‘l discussed in the
preceding four sections to bear on the problem ofdo’ﬁmining the height of
burst which results in the greatest area of blast &upge. There are two
argunents which favor an air burst quite apart from ;,hé influence of obligue
reflection. First, a bomb burst close to the ground is accomp;nied by
cratering and melting of the ground and hence a loss of energy to the blast.
Second, an air burst avoids much shielding of one structure by motﬁer. An
undesirable feature of air burast is, of course, the fact that the bomb is |
further removed from the target than it would be if it were burst on the
ground. A compensating feature is the fact that the high pressure region of
a ‘bomb burst on or clogse to the ground would over-dnn;oy the target in the
near vicinity of the bomb. This local overdestruction regresents an unnecessary
expenditure of energy on nearby parts of the target region which decreasés the
destruction i:xflicted an more remote structures., The reduction in blast
pressure due to elsvating the bomb is of course more serious for parts of the
target which were in immediate contact with the ground burst bomb -- they
became removed by at least the'heigbt-of burst. For more distant parts of*thc
target the effect of raising ﬁk;o bomp off the ground is less important, and at
distances which are two or three times greater than thevheight of burst th&
change in distance from bomb to target due t? elevating the bomb is completely
unimportant in its effect on the preasure at the target.

Judging from the results obtained in t.he lom burst" §100 feet) at Trinity,
it is possible to @t reasonable lower limits on the height of burst required
to minimize some of the above blast reducing effects due to the proximity of
the ground. _

If 1t 4s desired to avoid fusing earth and structurel materials, then

since the radius of the ard® over which the earth was fused at Trinity was
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aboutkl,OOO feet, the height of burst he which will avoid such fusing is

%

he 2> 1,000 feet" o (35)
This nunberr',is for an energy release in the form of radiaant energy of 3 kilo-
tons of v'ﬁ(T"tM, since one may use an inverse sgulire law for such radiative
effects, ths height of burst which will avoid fusing will be related to the

tonnage released as radiant energy Wy (kilotons TNT) by the inequality

he > 1,000 (ii..) 3 (36)

-

This calculatio'n assumes no attenuation of the beam due to absorption. It

is not possible to state what propertion of the m:.clear snergy will be released
as radiant energy without knowing the design details of the bomb. To date no
such calculation has been carried out because of the extreme camplexity of

the problem. However, the Trinity figures give a useful indication of the
proportioﬁ of energy that appears as radiation.

M o= 2 (37)
Wo 10

As a rough rulé then, to avoid fusing

<L
lpau. W, (38)

- where hy = height of burst in feet to avoid fusing,
W, = blast energy in kilotons TNT.

The available evidence on cratering from air burst bombs is very frag-
mentary. Indeed, because of the extremely high pressures and great duration
of tm‘bi'a“;s‘t from & nuclear explosion it is not possible in our present state
of lmmiig@ge to interpret, in any complete way, dats on cratering from ordinary

oxplosiV'es so that it will apply to nuclear explosives. The only data on
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cratering by a nuclear explosion is that obtained at Trinity where the bomb
was detonated at a height of 100 feet: A compression crater 10 feet deep in
the center and 500 feet in radius was formed in the close packed sand of the
New Mexico déaert. Using this point an&&he data in the Weapons Manual as a
guide, it a]ppears extremely unlikely that any cratering at all would have
occurred had the charge been detonated at & height of 250 feet, |

hpe crater > 250 feet for Wy = 10 kilotons mr‘?’)

(20)

It is not possible to match everywhere the blast from a nuclear explosion
by the blast from a suitable quantity of ™NT. At small distances the

- pressures developed in the nuclear explosiod greatly excéed any pressures
developed in a chemical explosion. In addition, the nuclear explosion is
very much more rapid than a chemical explosion and does not feature after-
burning of the constitutents so characteristic of the latter. Because of.
this, and the finite size of the mass of INT as opposed to that of the
nuclear explosive, the shape of the blast wave and hence its decay as it
travels outward is also different in the two cases, Desgpite this, it is
possible to find (cf. Section 10.4) & quantity of INT which is equivalent
‘to the nuclear explosive in the sense that the peak overpressure, distance
characteristic is nearly the same over a small range of overpressure, say
from 5 to 10 pounds per square inch. The Trinity value Wy = 10 kilotons
INT equivalent is for distances where the overpressure is in the range
5 to 20 pounds per square inch. Since the ground was close, the energy
effective in producing a crater was greater than 10 kilotons and hence
the assumption of 10 kilotons amounts to saying that the ground is easier
to crater. The value for h, . is therefore probably too high.

scaling for an explosion of blast tonnage W, (kilotons TNT) :

1/3
hy,c, > 120 Wy / (39)
where h, . = height of burst in feet to avoid cratering.

Prom the above censiderations the height of burst hpin to minimize the
reduction in blast due to the proximity of the ground may be estimated as

R

hpin? bn.c, or hg, whichever is greater. (40)

The question of the value of h required to minimize overdestruction of the
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target is sensitively dependqnt, m ?xe .cgfb:j;litc'of the target. Given the
pressure which is considered as the limit beyond which overdestructim sets
in, a reasonable value of the minimum height of burst can be obtained from the
pu-esa'urg' distance curve in free. air (cf. Chapter 7 of this volumwe} § and the
multiplication of pressure on reflection from the ground, considering the blast
wave to be normally ineident on a rigid ground,

Noﬂ let us consider the effect of roflect;ion on the pressure in the
blest-from a bomb burst high (k > he) in the air. Directly under the bosb
a rcfiieqc;"r.ion from the ground partly compensates for the loss in overpressure
due to tﬁe increase in distance from the bomb to the target area which ac-
companies air burst. "me gain in overpressure occasioned by the reflection
of a normally incident shock is a factor which would be 2 if the shock were
weak, and between 2 and 8 if the shock is of finite strength (cf. Figure 21,
Sect.ion 10:2). For shock strength in the intefeating region, 5 to 10 poundsl
per square inch, this factor is only a 1little above 2. This, then, is the
effect of head-on reflection. As one departs from the point immediately under
the bomb, the increase in the coverpréisure gq;s even more rgvorable because
o(s“ the properties of oblique reflection mentioned previously. The highest
amplii‘ication occurs”soon after Mach reflection sets in. After this it drops
again as{-incidcnco becomes more and more~glancing. Since the blast decays
with diat.nncc and the free air peak overpressure drops, it is clearly most
advmugeous to get the greatest boosting factor where the blast pressure is
Just mgi{&al for the desired t,ypo of damage. One should, therefore, choose
the hoigh,t. of burst so that the maximum amplification occurs at that point.

: Binc§ the optimum amplification occurs for early Mach reflection the_ ‘ »
height of burst is to be determined by the rfequirement that Mach reflection “
sets in at about the limit of B demage. (21) A¢ this point the amplification; 3

- L2 ]
L

. srm exn =
@ w - .
- «
L]
-

(¢3)) e o
- If it is desired to maximize A aamAge the height of burst should be

modified so that Mach reflectidﬁmdﬁdr&a-ééiﬁbapondingly sarlier,
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factor for overpressure cas be hg:?%ﬁh ﬁﬁ g.gs{. Section 10.3), but it seems
safer to count on a somewhat anlllcr valun and consider higher values of peak
overpressure, because of varim diaaipat.:lvo mechanisms (cf. Section 10.1).
The method by which the optimun hueﬁi!inition is properly positioned raquiros
same further discussion. Actually, when the target, for example the wall of
a house, is struck, it receives two blows if there is %tgulnr reflection by
the ground in its vieinity: one by the direct and ond‘by the reflected blast
wave, If these two waves are close together»they both act as one blast. If
they are far apart, 1.e., the angle of reflection is far from 90°, then these
two shock waves hit the lafger part of the wall with a considerable lag
between their times of arrival. (As long as the reflection is regular the
two shocks would arrive simultaneously at the ground but would be separate at
all points above the ground. ;Ihe separation between shocks %ncreases with
distance off the ground.) ,Invthia cage dissipative and other unfavorable
effects may act between th@itio shocks. Clearly, the best situation from this
point of view is one in whetH the two éﬁbéks are merged together, which happens
in the stem of the Y. Hence the house should be hit by this stem. As was
pointed out, it is desirable to have the Mach effect in its early stages just
as ihe distance at which the type 6!' damage under consideration cesses. Now
if one uishes tc destroy & wall, then the stem of the Y should cover the entire
wall. ConaGQuantly the height of burst should be so chosen that the stem is ~
about as hlgh, or higher than the target, about at the distance B damege ceases,
In view of these considerations and the validity of the peak pressure
criterion (cf. Section 10.1) we determine the proper height of burst as
follows:
(1) The peak pressure required to iﬁflict & given type of damage,
B damage, for example, is known: from 3 to 9 pounds per équare
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(2) &n ampliﬁcation-j.n-ﬂp anrm&re of at lsast 2 can be
.mctd (22) O o-o . au.‘ do. .o

This is approximate; the actual aupl.tfica’dm is dctemintd uporimnt-
ally, ae described in Section 10.}. . _ ‘

(3) The stem of the Mach Y ahonI@ be about equal to the target
height., |

By 1, 2 the bomb must be burst at a diat.gncg where the peak pressure is
something less than half of the peak pressure required according to the above,
The height of burst is determined by 1, 2 in canjunction with requirement 3
according to the procedure described in Section 10 4.

We can now proceed to a statement of the hoigh“'t of burst and the damage
radius in a few selected cases, On the basis of the Trinity test and the
combat drop at Negasaki we may assd;e an eqaivalont blast t.ouna;e of 10 ard
20 kilotons. The pedk pressures roqumd !’cg' ﬂ dmge may vary according to
the structures involved, and even for typical !‘elidential property from count.ry
to country. In J;pln- 3 pounds per square inch msy be eritical; in the U.S.A.,
England, and Gmnny‘,‘ 6 to. 9 ;_:ounds per:sguare inch might be required. If one
is conservative cne méy use & higher value(23)

. . Lt

In connection with the planning of ﬁhia project, values o;r between 3 and
6 pounds per square inch were nsuslly talked about. The height of bursts»
was finally determined on the basis of a 6 pounds per sjuare inch estima
partly in order to be conservative and partly because we were not certa
what the tonnage of the blast would be. The uncertainty in tomnége was
due to the grobability of predetonation and general uncertainties neces-
sarily affecting the first trials.

The following table gives the heights of burat consistent with the pressure
levels of 10 and 6 pounds per square inch and stem heights of 30 and 100 feet.
The table is obtained from experiments as discussed in Section 10.4. Table 10.5
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gives the heights of burst fon 20 and 20ikillotbris TNT which should be used if

!two heights (30 and 100 feet) are to be attained by the stem of the Mach Y at

the positions, R, where the peak overpressures are 10 and.6 pounds per square

inch. A more complete table can be found in Section 10.4.

Table 10.5
W = 10 kiletons
Overpressure Distance Height of burst
Pr (psi) R (ft) ' H (ft)
Y - 30 ft' Y = 100 rt' Y = 30 ftc Y = 100 fta
10 3600 3300 2000 1400
6 5300 5000 - 2600 2000
& 20 oto
10 1600 4300 2500 1900
6 6600 6500 3300 2800

On the basis of such coneiderations it mas fqmd that & nuclear boab in

the 10-20 kileton range should be burst at anf"’lltituw:‘dr 1500-3000 feet to

maximize blast damage.

fusing and cratering the earth.

10.5-1 A;c_uraq of Wt of Burst

It 15 appropriate here to insert a few remarks about. the accuracy to

Such heights of burst would, in addition, aveid both

which it is desirsble to fix the height of burst since this requirement is

immediately reflected in the complexity of the fusing apparatus required. An

accuracy of ¥

50 feet, for ‘example, dictates a radar activated fuse whereas

an accuracy of t 250 feet might be attained by a relativoly simple clock

ese 008 &

mechaniam which could be pre-set in the %irpkane - absuiihg that the bomb is

LR .
- & ®
® 6 @
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carried by 2irplane.

There are several factors which limit the.faccuracy to which the bomb
should be fused., They are;
) \ (1) 'Experimental errcrs in measuring triple point trajectories
and pressures in the blast configuration.

(2) lack of criteria as tc the precise height the stem of the

DO NOT CIRCULATE
Retention Copy

gﬁ Mach Y should attain §t. the limiting pressure which it is
‘: _desired to enhance ty irregular reflection.
‘1‘ (3)-i",i;‘p‘fcrfnyét knowledge of the target configuration and hence of
:3 “ fim pressure which is required to produce msrginal destruction.
; (h)‘i The variable nuclear and hence blast performance of the bomb.
= It can be stated with reasonable certainty, say with a prob-
o abilit.j of 0.95, that the nuclear efficiency will be)grleat.er
: '  than 1/2 the rated efficiency.(zh) l:. .‘l
, L
(24) )

This was 'caleculated by R. F. Christy for a Christy type gadget, but is
not sensitively dependent on the specific implosion design.

One feature wh:.ch makes the choice of the heights of burst less seriously

. dependent onthe aﬁove facts is the relative insensitivity of the value of

the area over which the pressure exceeds a certain prescribed value to the
height at -hic!} the bomb is burst. A variat.io;: in height of burst of * 450
teet, for .Ix'a?t‘ﬁplo,’ produces no more than a 20 per cent varjation in the ares
defined ;bm'in'the pressure region 5 to 10 pound@-per square inch for blast
tonnages oI 10 to 20 kilotons. 1In view of this fact, and those cited above, a
very con%cx:'...u?:gve limit or; the accuracy to which the.boob should be burst when

used in lrea ltj.hck is * 250 ?eet: ‘\‘-“ Bo CIRCULATE
Do S\ Retention Copy
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